
Antonio Galvez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5217058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology, 2007, 120, 51-70.	2.1	923
2	Enterococci as probiotics and their implications in food safety. International Journal of Food Microbiology, 2011, 151, 125-140.	2.1	592
3	Diversity and applications of <i>Bacillus</i> bacteriocins. FEMS Microbiology Reviews, 2011, 35, 201-232.	3.9	472
4	Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiology Reviews, 2007, 31, 293-310.	3.9	358
5	Application of Bacteriocins in the Control of Foodborne Pathogenic and Spoilage Bacteria. Critical Reviews in Biotechnology, 2008, 28, 125-152.	5.1	244
6	Biocide tolerance in bacteria. International Journal of Food Microbiology, 2013, 162, 13-25.	2.1	195
7	Functional and Safety Aspects of Enterococci Isolated from Different Spanish Foods. Systematic and Applied Microbiology, 2004, 27, 118-130.	1.2	187
8	African fermented foods and probiotics. International Journal of Food Microbiology, 2014, 190, 84-96.	2.1	180
9	Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples. International Journal of Food Microbiology, 2008, 123, 38-49.	2.1	176
10	Bacteriocin AS-48, a microbial cyclic polypeptide structurally and functionally related to mammalian NK-lysin. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11221-11226.	3.3	170
11	Peptide AS-48: Prototype of a New Class of Cyclic Bacteriocins. Current Protein and Peptide Science, 2004, 5, 399-416.	0.7	169
12	Multiple Roles of Staphylococcus aureus Enterotoxins: Pathogenicity, Superantigenic Activity, and Correlation to Antibiotic Resistance. Toxins, 2010, 2, 2117-2131.	1.5	133
13	Microbial antagonists to food-borne pathogens and biocontrol. Current Opinion in Biotechnology, 2010, 21, 142-148.	3.3	125
14	Culture-independent study of the diversity of microbial populations in brines during fermentation of naturally-fermented AloreA±a green table olives. International Journal of Food Microbiology, 2011, 144, 487-496.	2.1	124
15	A simple method for semi-preparative-scale production and recovery of enterocin AS-48 derived from Enterococcus faecalis subsp. liquefaciens A-48-32. Journal of Microbiological Methods, 2003, 55, 599-605.	0.7	120
16	New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Research International, 2015, 78, 465-481.	2.9	119
17	The Cyclic Antibacterial Peptide Enterocin AS-48: Isolation, Mode of Action, and Possible Food Applications. International Journal of Molecular Sciences, 2014, 15, 22706-22727.	1.8	110
18	Culture-independent analysis of the microbial composition of the African traditional fermented foods poto poto and dégué by using three different DNA extraction methods. International Journal of Food Microbiology, 2006, 111, 228-233.	2.1	107

#	Article	IF	CITATIONS
19	Inhibition of toxicogenic Bacillus cereus in rice-based foods by enterocin AS-48. International Journal of Food Microbiology, 2006, 106, 185-194.	2.1	106
20	Characterization of lactic acid bacteria from naturally-fermented Manzanilla Aloreña green table olives. Food Microbiology, 2012, 32, 308-316.	2.1	103
21	Heavy metal tolerance of microorganisms isolated from wastewaters: Identification and evaluation of its potential for biosorption. Chemical Engineering Journal, 2012, 210, 325-332.	6.6	98
22	Analysis of the gene cluster involved in production and immunity of the peptide antibiotic AS-48 in Enterococcus faecalis. Molecular Microbiology, 1998, 27, 347-358.	1.2	97
23	Virulence factors, antibiotic resistance, and bacteriocins in enterococci from artisan foods of animal origin. Food Control, 2009, 20, 381-385.	2.8	96
24	The cyclic structure of the enterococcal peptide antibiotic AS-48. FEBS Letters, 1994, 352, 87-90.	1.3	95
25	Control of Listeria monocytogenes in model sausages by enterocin AS-48. International Journal of Food Microbiology, 2005, 103, 179-190.	2.1	95
26	Control of Alicyclobacillus acidoterrestris in fruit juices by enterocin AS-48. International Journal of Food Microbiology, 2005, 104, 289-297.	2.1	93
27	The controversial nature of the Weissella genus: technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health. Frontiers in Microbiology, 2015, 6, 1197.	1.5	93
28	Structure of Bacteriocin AS-48: From Soluble State to Membrane Bound State. Journal of Molecular Biology, 2003, 334, 541-549.	2.0	92
29	Isolation and characterization of enterocin EJ97, a bacteriocin produced by Enterococcus faecalis EJ97. Archives of Microbiology, 1998, 171, 59-65.	1.0	88
30	Antimicrobial activity, safety aspects, and some technological properties of bacteriocinogenic Enterococcus faecium from artisanal Tunisian fermented meat. Food Control, 2010, 21, 462-470.	2.8	88
31	The human gastrointestinal tract and oral microbiota in inflammatory bowel disease: a state of the science review. Apmis, 2017, 125, 3-10.	0.9	87
32	Resistance to Antibiotics, Biocides, Preservatives and Metals in Bacteria Isolated from Seafoods: Co-Selection of Strains Resistant or Tolerant to Different Classes of Compounds. Frontiers in Microbiology, 2017, 8, 1650.	1.5	84
33	Application of the broad-spectrum bacteriocin enterocin AS-48 to inhibit Bacillus coagulans in canned fruit and vegetable foods. Food and Chemical Toxicology, 2006, 44, 1774-1781.	1.8	83
34	Microbiological Study of Lactic Acid Fermentation of Caper Berries by Molecular and Culture-Dependent Methods. Applied and Environmental Microbiology, 2005, 71, 7872-7879.	1.4	82
35	Biocontrol of Psychrotrophic Enterotoxigenic Bacillus cereus in a Nonfat Hard Cheese by an Enterococcal Strain–Producing Enterocin AS-48. Journal of Food Protection, 2004, 67, 1517-1521.	0.8	81
36	Antibiotic resistance of Lactobacillus pentosus and Leuconostoc pseudomesenteroides isolated from naturally-fermented Aloreña table olives throughout fermentation process. International Journal of Food Microbiology, 2014, 172, 110-118.	2.1	81

#	Article	IF	CITATIONS
37	Synergistic effect of enterocin AS-48 in combination with outer membrane permeabilizing treatments against Escherichia coli O157:H7. Journal of Applied Microbiology, 2005, 99, 1364-1372.	1.4	80
38	Effect of Immersion Solutions Containing Enterocin AS-48 on Listeria monocytogenes in Vegetable Foods. Applied and Environmental Microbiology, 2005, 71, 7781-7787.	1.4	80
39	Inhibition of Staphylococcus aureus in dairy products by enterocin AS-48 produced in situ and ex situ: Bactericidal synergism with heat. International Dairy Journal, 2007, 17, 760-769.	1.5	80
40	Combined effect of enterocin AS-48 and high hydrostatic pressure to control food-borne pathogens inoculated in low acid fermented sausages. Meat Science, 2010, 84, 594-600.	2.7	79
41	Phenol-oxidase (laccase) activity in strains of the hyphomycete Chalara paradoxa isolated from olive mill wastewater disposal ponds. Enzyme and Microbial Technology, 2000, 26, 484-490.	1.6	78
42	Inhibition of Bacterial Growth, Enterotoxin Production, and Spore Outgrowth in Strains of Bacillus cereus by Bacteriocin AS-48. Applied and Environmental Microbiology, 2002, 68, 1473-1477.	1.4	78
43	Control of Staphylococcus aureus in sausages by enterocin AS-48. Meat Science, 2005, 71, 549-556.	2.7	78
44	Isolation and characterization of a nisin-like bacteriocin produced by a Lactococcus lactis strain isolated from charqui, a Brazilian fermented, salted and dried meat product. Meat Science, 2013, 93, 607-613.	2.7	77
45	Biomass production and detoxification of wastewaters from the olive oil industry by strains of Penicillium isolated from wastewater disposal ponds. Bioresource Technology, 2000, 74, 217-221.	4.8	74
46	Effects of exposure to quaternary-ammonium-based biocides on antimicrobial susceptibility and tolerance to physical stresses in bacteria from organic foods. Food Microbiology, 2017, 63, 58-71.	2.1	74
47	Enterocin AS-48RJ: a variant of enterocin AS-48 chromosomally encoded by Enterococcus faecium RJ16 isolated from food. Systematic and Applied Microbiology, 2005, 28, 383-397.	1.2	71
48	Enhanced bactericidal activity of enterocin AS-48 in combination with essential oils, natural bioactive compounds and chemical preservatives against Listeria monocytogenes in ready-to-eat salad. Food and Chemical Toxicology, 2009, 47, 2216-2223.	1.8	71
49	Isolation and identification of Enterococcus faecium from seafoods: Antimicrobial resistance and production of bacteriocin-like substances. Food Microbiology, 2010, 27, 955-961.	2.1	70
50	Isolation of bacteriocinogenic Lactobacillus plantarum strains from ben saalga, a traditional fermented gruel from Burkina Faso. International Journal of Food Microbiology, 2006, 112, 44-50.	2.1	69
51	Treatment of Vegetable Sauces with Enterocin AS-48 Alone or in Combination with Phenolic Compounds To Inhibit Proliferation of Staphylococcus aureus. Journal of Food Protection, 2007, 70, 405-411.	0.8	68
52	Risk factors in enterococci isolated from foods in Morocco: Determination of antimicrobial resistance and incidence of virulence traits. Food and Chemical Toxicology, 2008, 46, 2648-2652.	1.8	67
53	Influence of a diet enriched with virgin olive oil or butter on mouse gut microbiota and its correlation to physiological and biochemical parameters related to metabolic syndrome. PLoS ONE, 2018, 13, e0190368.	1.1	63
54	Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor. Food Microbiology, 2014, 44, 249-257.	2.1	61

#	Article	IF	CITATIONS
55	Fermented Aloreña Table Olives as a Source of Potential Probiotic Lactobacillus pentosus Strains. Frontiers in Microbiology, 2016, 7, 1583.	1.5	59
56	Enhanced bactericidal effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against Salmonella enterica in apple juice. International Journal of Food Microbiology, 2008, 128, 244-249.	2.1	57
57	Influence of Physico-Chemical Factors on the Oligomerization and Biological Activity of Bacteriocin AS-48. Current Microbiology, 2001, 42, 89-95.	1.0	56
58	Inhibition of Listeria monocytogenes by enterocin EJ97 produced by Enterococcus faecalis EJ97. International Journal of Food Microbiology, 2004, 90, 161-170.	2.1	56
59	Characterisation of laccase activity produced by the hyphomycete Chalara (syn. Thielaviopsis) paradoxa CH32. Enzyme and Microbial Technology, 2002, 31, 516-522.	1.6	53
60	Potential Applications of the Cyclic Peptide Enterocin AS-48 in the Preservation of Vegetable Foods and Beverages. Probiotics and Antimicrobial Proteins, 2010, 2, 77-89.	1.9	52
61	Effect of combined physico-chemical preservatives on enterocin AS-48 activity against the enterotoxigenic Staphylococcus aureus CECT 976 strain. Journal of Applied Microbiology, 2004, 97, 48-56.	1.4	51
62	Bacteriocin-producing Lactobacillus strains isolated from poto poto, a Congolese fermented maize product, and genetic fingerprinting of their plantaricin operons. International Journal of Food Microbiology, 2008, 127, 18-25.	2.1	50
63	The Genes Coding for Enterocin EJ97 Production by Enterococcus faecalis EJ97 Are Located on a Conjugative Plasmid. Applied and Environmental Microbiology, 2003, 69, 1633-1641.	1.4	48
64	Inactivation of Listeria monocytogenes in Raw Fruits by Enterocin AS-48. Journal of Food Protection, 2008, 71, 2460-2467.	0.8	47
65	Effect of enterocin AS-48 in combination with biocides on planktonic and sessile Listeria monocytogenes. Food Microbiology, 2012, 30, 51-58.	2.1	47
66	Insight into Potential Probiotic Markers Predicted in Lactobacillus pentosus MP-10 Genome Sequence. Frontiers in Microbiology, 2017, 8, 891.	1.5	47
67	Optimization of enterocin AS-48 production on a whey-based substrate. International Dairy Journal, 2008, 18, 923-927.	1.5	46
68	Combined physico-chemical treatments based on enterocin AS-48 for inactivation of Gram-negative bacteria in soybean sprouts. Food and Chemical Toxicology, 2008, 46, 2912-2921.	1.8	46
69	Inhibition of Bacillus cereus and Bacillus weihenstephanensis in raw vegetables by application of washing solutions containing enterocin AS-48 alone and in combination with other antimicrobials. Food Microbiology, 2008, 25, 762-770.	2.1	45
70	Efficacy of Enterocin AS-48 against Bacilli in Ready-to-Eat Vegetable Soups and Purees. Journal of Food Protection, 2007, 70, 2339-2345.	0.8	43
71	Correlation between antibiotic and biocide resistance in mesophilic and psychrotrophic Pseudomonas spp. isolated from slaughterhouse surfaces throughout meat chain production. Food Microbiology, 2015, 51, 33-44.	2.1	43
72	Stability of Enterocin AS-48 in Fruit and Vegetable Juices. Journal of Food Protection, 2005, 68, 2085-2094.	0.8	42

#	Article	IF	CITATIONS
73	Production, Purification, and Properties of an Endoglucanase Produced by the HyphomyceteChalara(Syn.Thielaviopsis)paradoxaCH32. Journal of Agricultural and Food Chemistry, 2001, 49, 79-85.	2.4	41
74	Inhibition of Bacillus licheniformis LMG 19409 from ropy cider by enterocin AS-48. Journal of Applied Microbiology, 2006, 101, 422-428.	1.4	41
75	Isolation and identification of bacteria from organic foods: Sensitivity to biocides and antibiotics. Food Control, 2012, 26, 73-78.	2.8	41
76	Prevalence of bacteria resistant to antibiotics and/or biocides on meat processing plant surfaces throughout meat chain production. International Journal of Food Microbiology, 2013, 161, 97-106.	2.1	41
77	Synthesis and Evaluation of Antimicrobial and Antibiofilm Properties of A-Type Procyanidin Analogues against Resistant Bacteria in Food. Journal of Agricultural and Food Chemistry, 2018, 66, 2151-2158.	2.4	41
78	Effect of combined physico-chemical treatments based on enterocin AS-48 on the control of Listeria monocytogenes and Staphylococcus aureus in a model cooked ham. Food Control, 2010, 21, 478-486.	2.8	40
79	Safety and potential risks of enterococci isolated from traditional fermented capers. Food and Chemical Toxicology, 2006, 44, 2070-2077.	1.8	39
80	Changes in Gut Microbiota Linked to a Reduction in Systolic Blood Pressure in Spontaneously Hypertensive Rats Fed an Extra Virgin Olive Oil-Enriched Diet. Plant Foods for Human Nutrition, 2018, 73, 1-6.	1.4	39
81	A study on the microbiota from olive-mill wastewater (OMW) disposal lagoons, with emphasis on filamentous fungi and their biodegradative potential. Microbiological Research, 2000, 155, 143-147.	2.5	37
82	Phenotypic and Molecular Antibiotic Resistance Profile of <i>Enterococcus faecalis</i> and <i>Enterococcus faecium</i> Isolated from Different Traditional Fermented Foods. Foodborne Pathogens and Disease, 2013, 10, 143-149.	0.8	37
83	AS-48: a circular protein with an extremely stable globular structure. FEBS Letters, 2001, 505, 379-382.	1.3	36
84	Effect of virgin and refined olive oil consumption on gut microbiota. Comparison to butter. Food Research International, 2014, 64, 553-559.	2.9	36
85	Proteomic analysis of Lactobacillus pentosus for the identification of potential markers involved in acid resistance and their influence on other probiotic features. Food Microbiology, 2018, 72, 31-38.	2.1	36
86	Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria. Critical Reviews in Biotechnology, 2016, 36, 851-861.	5.1	35
87	Antimicrobial and antibiofilm activities of procyanidins extracted from laurel wood against a selection of foodborne microorganisms. International Journal of Food Science and Technology, 2017, 52, 679-686.	1.3	35
88	Combined treatments of enterocin AS-48 with biocides to improve the inactivation of methicillin-sensitive and methicillin-resistant Staphylococcus aureus planktonic and sessile cells. International Journal of Food Microbiology, 2013, 163, 96-100.	2.1	34
89	Antibiotic Multiresistance Analysis of Mesophilic and Psychrotrophic Pseudomonas spp. Isolated from Goat and Lamb Slaughterhouse Surfaces throughout the Meat Production Process. Applied and Environmental Microbiology, 2014, 80, 6792-6806.	1.4	34
90	Antimicrobial resistance determinants in antibiotic and biocide-resistant gram-negative bacteria from organic foods. Food Control, 2014, 37, 9-14.	2.8	33

#	Article	IF	CITATIONS
91	Inhibition of spoilage and toxigenic Bacillus species in dough from wheat flour by the cyclic peptide enterocin AS-48. Food Control, 2011, 22, 756-761.	2.8	31
92	Differentiation and Characterization by Molecular Techniques of Bacillus cereus Group Isolates from Poto Poto and Dégué, Two Traditional Cereal-Based Fermented Foods of Burkina Faso and Republic of Congo. Journal of Food Protection, 2007, 70, 1165-1173.	0.8	30
93	Produce from Africa's Gardens: Potential for Leafy Vegetable and Fruit Fermentations. Frontiers in Microbiology, 2016, 7, 981.	1.5	30
94	Bactericidal effects of high hydrostatic pressure treatment singly or in combination with natural antimicrobials on Staphylococcus aureus in rice pudding. Food Control, 2012, 28, 19-24.	2.8	29
95	The denaturation of circular enterocin AS-48 by urea and guanidinium hydrochloride. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2002, 1598, 98-107.	1.1	28
96	Antimicrobial activity of enterocin EJ97 against 'Bacillus macroides/Bacillus maroccanus' isolated from zucchini puree. Journal of Applied Microbiology, 2004, 97, 731-737.	1.4	28
97	Characterization of lactobacilli isolated from caper berry fermentations. Journal of Applied Microbiology, 2007, 102, 583-90.	1.4	28
98	Inactivation of exopolysaccharide and 3-hydroxypropionaldehyde-producing lactic acid bacteria in apple juice and apple cider by enterocin AS-48. Food and Chemical Toxicology, 2008, 46, 1143-1151.	1.8	28
99	Effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against the spoilage bacterium Lactobacillus diolivorans in apple juice. Food Microbiology, 2009, 26, 491-496.	2.1	28
100	The effect of adding antimicrobial peptides to milk inoculated with Staphylococcus aureus and processed by high-intensity pulsed-electric field. Journal of Dairy Science, 2009, 92, 2514-2523.	1.4	28
101	Virulence factors and antimicrobial resistance in Escherichia coli strains isolated from hen egg shells. International Journal of Food Microbiology, 2016, 238, 89-95.	2.1	28
102	Biocide Tolerance and Antibiotic Resistance in <i>Salmonella</i> Isolates from Hen Eggshells. Foodborne Pathogens and Disease, 2017, 14, 89-95.	0.8	28
103	pS86, A New Theta-Replicating Plasmid from Enterococcus faecalis. Current Microbiology, 2000, 41, 257-261.	1.0	27
104	Bacteriocin production, plasmid content and plasmid location of enterocin P structural gene in enterococci isolated from food sources. Letters in Applied Microbiology, 2006, 42, 331-337.	1.0	27
105	Evaluation of an enterocin AS-48 enriched bioactive powder obtained by spray drying. Food Microbiology, 2010, 27, 58-63.	2.1	27
106	Adaptation to Biocides Cetrimide and Chlorhexidine in Bacteria from Organic Foods: Association with Tolerance to Other Antimicrobials and Physical Stresses. Journal of Agricultural and Food Chemistry, 2017, 65, 1758-1770.	2.4	27
107	Refined versus Extra Virgin Olive Oil High-Fat Diet Impact on Intestinal Microbiota of Mice and Its Relation to Different Physiological Variables. Microorganisms, 2019, 7, 61.	1.6	27
108	Genetic determinants of antimicrobial resistance in Gram positive bacteria from organic foods. International Journal of Food Microbiology, 2014, 172, 49-56.	2.1	26

#	Article	IF	CITATIONS
109	Application of Lactobacillus plantarum Lb9 as starter culture in caper berry fermentation. LWT - Food Science and Technology, 2015, 60, 788-794.	2.5	26
110	Comparative proteomic analysis of a potentially probiotic Lactobacillus pentosus MP-10 for the identification of key proteins involved in antibiotic resistance and biocide tolerance. International Journal of Food Microbiology, 2016, 222, 8-15.	2.1	26
111	Monolayer Characteristics of Bacteriocin AS-48, pH Effect and Interactions with Dipalmitoyl Phosphatidic Acid at the Air–Water Interface. Journal of Colloid and Interface Science, 2001, 233, 306-312.	5.0	24
112	Adaptive tolerance to phenolic biocides in bacteria from organic foods: Effects on antimicrobial susceptibility and tolerance to physical stresses. Food Research International, 2016, 85, 131-143.	2.9	24
113	Effect of different activated coatings containing enterocin AS-48 against Listeria monocytogenes on apple cubes. Innovative Food Science and Emerging Technologies, 2016, 35, 177-183.	2.7	24
114	Antagonistic Action of the Bacterium Bacillus Licheniformis M-4 Toward the Amoeba Naegleria Fowleri. Journal of Eukaryotic Microbiology, 1993, 40, 323-328.	0.8	23
115	Production of Antimicrobial Substances by Bacteria Isolated from Fermented Table Olives. World Journal of Microbiology and Biotechnology, 2006, 22, 765-768.	1.7	23
116	Inhibition of food poisoning and pathogenic bacteria by Lactobacillus plantarum strain 2.9 isolated from ben saalga, both in a culture medium and in food. Food Control, 2008, 19, 842-848.	2.8	23
117	Evaluation of antimicrobial and proteolytic activity of enterococci isolated from fermented products. European Food Research and Technology, 2009, 230, 63-70.	1.6	23
118	Annotated Genome Sequence of Lactobacillus pentosusMP-10, Which Has Probiotic Potential, from Naturally Fermented Aloreña Green Table Olives. Journal of Bacteriology, 2011, 193, 4559-4560.	1.0	23
119	Preservation of Manzanilla Aloreña cracked green table olives by high hydrostatic pressure treatments singly or in combination with natural antimicrobials. LWT - Food Science and Technology, 2014, 56, 427-431.	2.5	23
120	In silico genomic insights into aspects of food safety and defense mechanisms of a potentially probiotic Lactobacillus pentosus MP-10 isolated from brines of naturally fermented Aloreña green table olives. PLoS ONE, 2017, 12, e0176801.	1.1	23
121	Copper tolerance and antibiotic resistance in soil bacteria from olive tree agricultural fields routinely treated with copper compounds. Journal of the Science of Food and Agriculture, 2019, 99, 4677-4685.	1.7	23
122	Detection of ebp (endocarditis- and biofilm-associated pilus) genes in enterococcal isolates from clinical and non-clinical origin. International Journal of Food Microbiology, 2008, 126, 123-126.	2.1	22
123	Proteomic analysis of Lactobacillus pentosus for the identification of potential markers of adhesion and other probiotic features. Food Research International, 2018, 111, 58-66.	2.9	22
124	Antimicrobial activity of enterocin EJ97 on Bacillus coagulans CECT 12. Food Microbiology, 2003, 20, 533-536.	2.1	21
125	Bactericidal synergism through enterocin AS-48 and chemical preservatives against Staphylococcus aureus. Letters in Applied Microbiology, 2007, 45, 19-23.	1.0	21
126	Response of Bacillus cereus ATCC 14579 to challenges with sublethal concentrations of enterocin AS-48. BMC Microbiology, 2009, 9, 227.	1.3	21

#	Article	IF	CITATIONS
127	Prevention of spoilage by enterocin AS-48 combined with chemical preservatives, under vacuum, or modified atmosphere in a cooked ham model. Food Control, 2012, 24, 15-22.	2.8	21
128	Diversity, Distribution and Quantification of Antibiotic Resistance Genes in Goat and Lamb Slaughterhouse Surfaces and Meat Products. PLoS ONE, 2014, 9, e114252.	1.1	21
129	Food Biopreservation. SpringerBriefs in Food, Health and Nutrition, 2014, , .	0.5	21
130	The impact of enterocin AS-48 on the shelf-life and safety of sardines (Sardina pilchardus) under different storage conditions. Food Microbiology, 2014, 44, 185-195.	2.1	21
131	Biocide tolerance, phenotypic and molecular response of lactic acid bacteria isolated from naturally-fermented AloreA±a table to different physico-chemical stresses. Food Microbiology, 2016, 60, 1-12.	2.1	21
132	Changes in microbial diversity of brined green asparagus upon treatment with high hydrostatic pressure. International Journal of Food Microbiology, 2016, 216, 1-8.	2.1	21
133	Analysis of the effect of high hydrostatic pressure treatment and enterocin AS-48 addition on the bacterial communities of cherimoya pulp. International Journal of Food Microbiology, 2015, 196, 62-69.	2.1	20
134	Inhibition of Salmonella enterica Cells in Deli-Type Salad by Enterocin AS-48 in Combination with Other Antimicrobials. Probiotics and Antimicrobial Proteins, 2009, 1, 85-90.	1.9	19
135	Effect of polythene film activated with enterocin EJ97 in combination with EDTA against Bacillus coagulans. LWT - Food Science and Technology, 2010, 43, 514-518.	2.5	19
136	Comparative proteomic analysis of Listeria monocytogenes exposed to enterocin AS-48 in planktonic and sessile states. International Journal of Food Microbiology, 2013, 167, 202-207.	2.1	19
137	Microbial diversity in pitted sweet cherries (Prunus avium L.) as affected by High-Hydrostatic Pressure treatment. Food Research International, 2016, 89, 790-796.	2.9	19
138	Resistance to Antimicrobial Agents in Lactobacilli Isolated from Caper Fermentations. Antonie Van Leeuwenhoek, 2005, 88, 277-281.	0.7	18
139	Inactivation of Geobacillus stearothermophilus in canned food and coconut milk samples by addition of enterocin AS-48. Food Microbiology, 2009, 26, 289-293.	2.1	18
140	Antistaphylococcal Effect of Enterocin ASâ€48 in Bakery Ingredients of Vegetable Origin, Alone and in Combination with Selected Antimicrobials. Journal of Food Science, 2009, 74, M384-9.	1.5	18
141	Effect of autochthonous bacteriocin-producing Lactococcus lactis on bacterial population dynamics and growth of halotolerant bacteria in Brazilian charqui. Food Microbiology, 2014, 44, 296-301.	2.1	18
142	β-Glucosidase fromChalaraparadoxaCH32: Purification and Properties. Journal of Agricultural and Food Chemistry, 2000, 48, 3698-3703.	2.4	17
143	Deciphering Resistome and Virulome Diversity in a Porcine Slaughterhouse and Pork Products Through Its Production Chain. Frontiers in Microbiology, 2018, 9, 2099.	1.5	17
144	Increased Inactivation of Exopolysaccharide-Producing Pediococcus parvulus in Apple Juice by Combined Treatment with Enterocin AS-48 and High-Intensity Pulsed Electric Field. Journal of Food Protection, 2010, 73, 39-43.	0.8	16

#	Article	IF	CITATIONS
145	Biocide and Copper Tolerance in Enterococci from Different Sources. Journal of Food Protection, 2013, 76, 1806-1809.	0.8	16
146	Natural Antimicrobials for Food Biopreservation. SpringerBriefs in Food, Health and Nutrition, 2014, , 3-14.	0.5	16
147	Title is missing!. Current Microbiology, 2001, 42, 89.	1.0	16
148	Semi-preparative scale purification of enterococcal bacteriocin enterocin EJ97, and evaluation of substrates for its production. Journal of Industrial Microbiology and Biotechnology, 2007, 34, 779-785.	1.4	15
149	Assay of Enterocin AS-48 for Inhibition of Foodborne Pathogens in Desserts. Journal of Food Protection, 2009, 72, 1654-1659.	0.8	15
150	Inhibition of planktonic and sessile Salmonella enterica cells by combinations of enterocin AS-48, polymyxin B and biocides. Food Control, 2013, 30, 214-221.	2.8	15
151	Characterization of biocide-tolerant bacteria isolated from cheese and dairy small-medium enterprises. Food Microbiology, 2017, 62, 77-81.	2.1	15
152	Changes in bacterial diversity of refrigerated mango pulp before and after treatment by high hydrostatic pressure. LWT - Food Science and Technology, 2017, 78, 289-295.	2.5	14
153	Treatment With High-Hydrostatic Pressure, Activated Film Packaging With Thymol Plus Enterocin AS-48, and Its Combination Modify the Bacterial Communities of Refrigerated Sea Bream (Sparus) Tj ETQq1 1	0.78 43 514 r	gBT1/Overlock
154	Biocide tolerance and antibiotic resistance of Enterobacter spp. isolated from an Algerian hospital environment. Journal of Global Antimicrobial Resistance, 2019, 18, 291-297.	0.9	14
155	Analysis of the Bacterial Diversity of Paipa Cheese (a Traditional Raw Cow's Milk Cheese from) Tj ETQq1 1	0.784314 rş 1.6	gBT ₁ /Overlock
156	Antimicrobial and antioxidant activities of flavonoids isolated from wood of sweet cherry tree (<i>Prunus avium</i> L.). Journal of Wood Chemistry and Technology, 2021, 41, 104-117.	0.9	14
157	Effect of enterocin EJ97 against GeobacillusÂstearothermophilus vegetative cells and endospores in canned foods and beverages. European Food Research and Technology, 2010, 230, 513-519.	1.6	13
158	Effects of exposure to biocides on susceptibility to essential oils and chemical preservatives in bacteria from organic foods. Food Control, 2017, 80, 176-182.	2.8	13
159	Trace element fixation in sediments rich in organic matter from a saline lake in tropical latitude with hydrothermal inputs (Sochagota Lake, Colombia): The role of bacterial communities. Science of the Total Environment, 2021, 762, 143113.	3.9	13
160	Microbial diversity changes in soybean sprouts treated with enterocin AS-48. Food Microbiology, 2009, 26, 922-926.	2.1	12
161	Inactivation of Salmonella enterica cells in Spanish potato omelette by high hydrostatic pressure treatments. Innovative Food Science and Emerging Technologies, 2012, 14, 25-30.	2.7	12
162	Transfer of a plasmid determining bacteriocin Bc-48 production and immunity, and response to sexual pheromones in Enterococcus faecalis S-48. Plasmid, 1992, 28, 61-69.	0.4	11

#	Article	IF	CITATIONS
163	Widespread production of ASâ€48â€like bacteriocins in strains of Enterococcus faecalis?. Molecular Microbiology, 1998, 29, 1318-1319.	1.2	11
164	Evaluation of immunomodulatory effects of nisin-containing diets on mice. FEMS Immunology and Medical Microbiology, 1999, 24, 35-42.	2.7	11
165	Characterization of a bacteriocin-producing strain of Enterococcus faecalis from cow's milk used in the production of Moroccan traditional dairy foods. World Journal of Microbiology and Biotechnology, 2008, 24, 997-1001.	1.7	11
166	A Quantitative Real-time PCR Assay for Quantification of Viable Listeria Monocytogenes Cells After Bacteriocin Injury in Food-First Insights. Current Microbiology, 2010, 61, 515-519.	1.0	11
167	Multilocus sequence typing and antimicrobial resistance in Enterococcus faecium isolates from fresh produce. Antonie Van Leeuwenhoek, 2014, 105, 413-421.	0.7	11
168	Complete Genome Sequence of a Potential Probiotic, Lactobacillus pentosus MP-10, Isolated from Fermented Aloreña Table Olives. Genome Announcements, 2016, 4, .	0.8	11
169	Analysis of potential risks from the bacterial communities associated with air-contact surfaces from tilapia (Oreochromis niloticus) fish farming. Environmental Research, 2018, 160, 385-390.	3.7	11
170	Genetic Determinants for Metal Tolerance and Antimicrobial Resistance Detected in Bacteria Isolated from Soils of Olive Tree Farms. Antibiotics, 2020, 9, 476.	1.5	11
171	Antibiotic Resistance Profile of Microbes From Traditional Fermented Foods. , 2017, , 675-704.		10
172	Antimicrobial activity of phenolics isolated from the pruning wood residue of European plum (Prunus) Tj ETQq0 () 0 _{.rg} BT /C	Overlock 10 Ti 10
173	Determination of natural resistance of mice fed dietary lipids to experimental infection induced by Listeria monocytogenes. FEMS Immunology and Medical Microbiology, 2000, 27, 127-133.	2.7	9
174	Plasmid Profile Patterns and Properties of Pediococci Isolated from Caper Fermentations. Journal of Food Protection, 2006, 69, 1178-1182.	0.8	9
175	Antibacterial activity of carvacrol and 2-nitro-1-propanol against single and mixed populations of foodborne pathogenic bacteria in corn flour dough. Food Microbiology, 2010, 27, 274-279.	2.1	9
176	Food Applications and Regulation. , 2011, , 353-390.		9
177	Biofilms formed by microbiota recovered from fresh produce: Bacterial biodiversity, and inactivation by benzalkonium chloride and enterocin AS-48. LWT - Food Science and Technology, 2017, 77, 80-84.	2.5	9
178	Efficacy of "HLEâ€â€"a multidrug efflux-pump inhibitor—as a disinfectant against surface bacteria. Environmental Research, 2018, 165, 133-139.	3.7	9
179	Correlations among Resistances to Different Antimicrobial Compounds in Salmonella Strains from Hen Eggshells. Journal of Food Protection, 2018, 81, 178-185.	0.8	9
180	Analysis of pro-inflammatory cytokine production in mouse spleen cells in response to the lantibiotic nisin. International Journal of Antimicrobial Agents, 2003, 21, 601-603.	1.1	8

#	Article	IF	CITATIONS
181	Biocide tolerance in Salmonella from meats in Southern Spain. Brazilian Journal of Microbiology, 2015, 46, 1177-1181.	0.8	8
182	Inactivation of leuconostocs in cherimoya pulp by high hydrostatic pressure treatments applied singly or in combination with enterocin AS-48. LWT - Food Science and Technology, 2016, 65, 1054-1058.	2.5	8
183	Influence of the Type of Diet on the Incidence of Pathogenic Factors and Antibiotic Resistance in Enterococci Isolated from Faeces in Mice. International Journal of Molecular Sciences, 2019, 20, 4290.	1.8	8
184	Biodegradation of olive mill wastewaters (OMW) by strains of <i>Scopulariopsis</i> spp. isolated from OMWâ€contaminated habitats. Toxicological and Environmental Chemistry, 1999, 72, 127-134.	0.6	7
185	Multilocus Sequence Typing ofEnterococcus faecalisfrom Vegetable Foods Reveals Two New Sequence Types. Foodborne Pathogens and Disease, 2009, 6, 321-327.	0.8	7
186	Characterization of Enterococcus faecalis and Enterococcus faecium from wild flowers. Antonie Van Leeuwenhoek, 2012, 101, 701-711.	0.7	7
187	Application of Lactic Acid Bacteria and Their Bacteriocins for Food Biopreservation. SpringerBriefs in Food, Health and Nutrition, 2014, , 15-22.	0.5	7
188	Copper and Zinc Tolerance in Bacteria Isolated from Fresh Produce. Journal of Food Protection, 2017, 80, 969-975.	0.8	7
189	Changes in the Bacterial Diversity of Human Milk during Late Lactation Period (Weeks 21 to 48). Foods, 2020, 9, 1184.	1.9	7
190	Purification of amoebolytic substances from Bacillus licheniformis M-4. Archives of Microbiology, 1994, 162, 98-102.	1.0	6
191	Vegetable Fermentations. , 2008, , 145-161.		6
192	Genome Sequence of Weissella thailandensis fsh4-2. Journal of Bacteriology, 2011, 193, 5868-5868.	1.0	6
193	Effect of enterocin AS-48 singly or in combination with biocides on planktonic and sessile B. cereus. Food Control, 2013, 34, 743-751.	2.8	6
194	Inactivation of <i>Staphylococcus aureus</i> in Oat and Soya Drinks by Enterocin ASâ€48 in Combination with Other Antimicrobials. Journal of Food Science, 2015, 80, M2030-4.	1.5	6
195	Analysis of the microbiota of refrigerated chopped parsley after treatments with a coating containing enterocin AS-48 or by high-hydrostatic pressure. Food Research International, 2017, 99, 91-97.	2.9	6
196	Impact of High-Hydrostatic Pressure Treatments Applied Singly or in Combination with Moderate Heat on the Microbial Load, Antimicrobial Resistance, and Bacterial Diversity of Guacamole. Microorganisms, 2020, 8, 909.	1.6	6
197	Effect of high hydrostatic pressure and activated film packaging on bacterial diversity of fruit puree. LWT - Food Science and Technology, 2019, 100, 227-230.	2.5	5
198	Antibacterial Protection by Enterocin AS-48 in Sport and Energy Drinks with Less Acidic pH Values. Journal of Food Protection, 2009, 72, 881-884.	0.8	4

#	Article	IF	CITATIONS
199	Survival and Highâ€Hydrostatic Pressure Inactivation of Foodborne Pathogens in Salmorejo, a Traditional Readyâ€toâ€Eat Food. Journal of Food Science, 2015, 80, M2517-21.	1.5	4
200	Analysis of the bacterial biodiversity of peaches under refrigerated storage after treatment by high hydrostatic pressure. Food and Bioproducts Processing, 2017, 102, 55-61.	1.8	4
201	Inactivation of Listeria in Foods Packed in Films Activated with Enterocin AS-48 plus Thymol Singly or in Combination with High-Hydrostatic Pressure Treatment. Coatings, 2017, 7, 204.	1.2	4
202	Bacteriocins: Natural Weapons for Control of Food Pathogens. , 2013, , 471-494.		3
203	Prevalence of an Intestinal ST40 Enterococcus faecalis over Other E. faecalis Strains in the Gut Environment of Mice Fed Different High Fat Diets. International Journal of Molecular Sciences, 2020, 21, 4330.	1.8	3
204	Potentially pathogenic bacteria isolated from Paipa cheese and its susceptibility profiles to antibiotics and biocides. Brazilian Journal of Microbiology, 2021, 52, 1535-1543.	0.8	3
205	Increasing the microbial inactivation of Staphylococcus aureus in sauces by a combination of enterocin AS-48 and 2-nitropropanol, and mild heat treatments. Food Control, 2012, 25, 740-744.	2.8	2
206	Effect of Activated Plastic Films on Inactivation of Foodborne Pathogens. Coatings, 2016, 6, 28.	1.2	2
207	Bacterial Inactivation by Using Plastic Materials Activated with Combinations of Natural Antimicrobials. Coatings, 2018, 8, 460.	1.2	2
208	Biopreservation of Vegetable Foods. SpringerBriefs in Food, Health and Nutrition, 2014, , 91-112.	0.5	2
209	The Potential Role of S-and Fe-Cycling Bacteria on the Formation of Fe-Bearing Mineral (Pyrite and) Tj ETQq1 1 0.	.784314 rg 0.8	gBT /Overlock 2
210	Staphylococcus aureus from Minas Artisanal Cheeses: Biocide Tolerance, Antibiotic Resistance and Enterotoxin Genes. Applied Sciences (Switzerland), 2022, 12, 1019.	1.3	2
211	Synergistic Activity of Biocides and Antibiotics on Resistant Bacteria from Organically Produced Foods. Microbial Drug Resistance, 2014, 20, 383-391.	0.9	1
212	Preservation of paste obtained from Picual green olives by high hydrostatic pressure treatment. Czech Journal of Food Sciences, 2017, 35, 246-250.	0.6	1
213	Natural Antimicrobials for Biopreservation of Sprouts. , 0, , .		1
214	Biopreservation of Milk and Dairy Products. SpringerBriefs in Food, Health and Nutrition, 2014, , 49-69.	0.5	1
215	Las bacteriocinas y su efecto sinérgico con tecnologÃas emergentes en alimentos. Mutis, 2021, 12, .	0.1	1
216	Quantification of Enterococcus faecalis and Enterococcus faecium in different foods using rRNA-targeted oligonucleotide probes. Journal of Microbiological Methods, 2005, 61, 187-192.	0.7	0

#	Article	IF	CITATIONS
217	Biopreservation of Meats and Meat Products. SpringerBriefs in Food, Health and Nutrition, 2014, , 23-47.	0.5	Ο
218	Interactions of the cyclic peptide enterocin AS-48 with biocides. , 2011, , .		0
219	Soluble proteome analysis of male Ericerus pela Chavannes cuticle at the stage of the second instar larva. African Journal of Microbiology Research, 2011, 5, .	0.4	Ο
220	Resistance to biocides among bacteria isolated from vegetable foods. , 2012, , .		0
221	Biopreservation of Seafoods. SpringerBriefs in Food, Health and Nutrition, 2014, , 75-89.	0.5	0