Wenyue Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5216946/publications.pdf

Version: 2024-02-01

37 papers	1,557 citations	21 h-index	330143 37 g-index
38	38	38	2043
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rational Design of Electrochemiluminescent Devices. Accounts of Chemical Research, 2021, 54, 2936-2945.	15.6	109
2	Detection of ascorbic acid based on its quenching effect on luminol–artemisinin chemiluminescence. Analyst, The, 2021, 146, 1981-1985.	3.5	18
3	A Solidâ€State Reference Electrode Based on a Selfâ€Referencing Pulstrode. Angewandte Chemie - International Edition, 2020, 59, 2294-2298.	13.8	24
4	Emulsion Doping of Ionophores and Ion-Exchangers into Ion-Selective Electrode Membranes. Analytical Chemistry, 2020, 92, 14319-14324.	6.5	6
5	Direct Potentiometric Sensing of Anion Concentration (Not Activity). ACS Sensors, 2020, 5, 313-318.	7.8	10
6	Artesunate-luminol chemiluminescence system for the detection of hemin. Talanta, 2019, 204, 379-385.	5.5	23
7	A portable wireless single-electrode system for electrochemiluminescent analysis. Electrochimica Acta, 2019, 308, 20-24.	5.2	28
8	Electrogenerated Chemiluminescence for Chronopotentiometric Sensors. Analytical Chemistry, 2019, 91, 4889-4895.	6.5	32
9	Stainless steel electrode for simultaneous stripping analysis of Cd(II), Pb(II), Cu(II) and Hg(II). Talanta, 2019, 191, 485-490.	5.5	60
10	Lucigenin fluorescent assay of tyrosinase activity and its inhibitor screening. Sensors and Actuators B: Chemical, 2019, 280, 41-45.	7.8	21
11	Detection of 1,3-dihydroxyacetone by tris(2,2′-bipyridine)ruthenium(II) electrochemiluminescence. Analytical and Bioanalytical Chemistry, 2018, 410, 2315-2320.	3.7	7
12	A single-electrode electrochemical system for multiplex electrochemiluminescence analysis based on a resistance induced potential difference. Chemical Science, 2018, 9, 3911-3916.	7.4	78
13	Recent advances in electrochemiluminescence devices for point-of-care testing. Current Opinion in Electrochemistry, 2017, 3, 4-10.	4.8	89
14	Artemisinin-Luminol Chemiluminescence for Forensic Bloodstain Detection Using a Smart Phone as a Detector. Analytical Chemistry, 2017, 89, 6160-6165.	6.5	62
15	Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate. Biosensors and Bioelectronics, 2017, 95, 8-14.	10.1	120
16	Amperometric detection of chloramine-T based on its reaction with p-aminophenylboronic acid. Mikrochimica Acta, 2017, 184, 687-691.	5.0	1
17	Determination of copper(II) based on its inhibitory effect on the cathodic electrochemiluminescence of lucigenin. Mikrochimica Acta, 2017, 184, 693-697.	5.0	9
18	Boric Acid-Based Dual Modulation Photoluminescent Glucose Sensor Using Thioglycolic Acid-Capped CdTe Quantum Dots. Journal of Analysis and Testing, 2017, 1, 291-297.	5.1	3

#	Article	IF	CITATIONS
19	Stainless Steel Electrode for Sensitive Luminol Electrochemiluminescent Detection of H ₂ O ₂ , Glucose, and Glucose Oxidase Activity. Analytical Chemistry, 2017, 89, 9864-9869.	6.5	165
20	New electrochemiluminescence catalyst: Cu2O semiconductor crystal and the enhanced activity of octahedra synthesized by iodide ions coordination. Materials Research Express, 2017, 4, 115021.	1.6	3
21	Detection of Sodium Dehydroacetate by Tris(2,2′â€bipyridine)ruthenium(II) Electrochemiluminescence. ChemElectroChem, 2017, 4, 1702-1707.	3.4	11
22	Efficient lucigenin/thiourea dioxide chemiluminescence system and its application for selective and sensitive dopamine detection. Sensors and Actuators B: Chemical, 2017, 238, 468-472.	7.8	72
23	N-Hydroxysuccinimide as an effective chemiluminescence coreactant for highly selective and sensitive detection. Analytical and Bioanalytical Chemistry, 2016, 408, 8851-8857.	3.7	8
24	Electrochemiluminescence of Acridines. Electroanalysis, 2016, 28, 2672-2679.	2.9	16
25	Increasing Electrochemiluminescence Intensity of a Wireless Electrode Array Chip by Thousands of Times Using a Diode for Sensitive Visual Detection by a Digital Camera. Analytical Chemistry, 2016, 88, 1123-1127.	6.5	40
26	Ultrasensitive Glutathione Detection Based on Lucigenin Cathodic Electrochemiluminescence in the Presence of MnO ₂ Nanosheets. Analytical Chemistry, 2016, 88, 7654-7659.	6.5	146
27	Electrochemiluminescence of Luminol-Tripropylamine System. Electrochimica Acta, 2016, 196, 245-251.	5.2	16
28	Chemiluminescence of creatinine/H2O2/Co2+ and its application for selective creatinine detection. Biosensors and Bioelectronics, 2016, 75, 347-351.	10.1	60
29	A Platinum Highly Concave Cube with one Leg on each Vertex as an Advanced Nanocatalyst for Electrocatalytic Applications. ChemCatChem, 2015, 7, 1064-1069.	3.7	24
30	Highly efficient quenching of tris(2,2′-bipyridyl)ruthenium(<scp>ii</scp>) electrochemiluminescence by ozone using formaldehyde, methylglyoxal, and glyoxalate as co-reactants and its application to ozone sensing. Analyst, The, 2015, 140, 3996-4000.	3.5	8
31	Fabrication of biomembrane-like films on carbon electrodes using alkanethiol and diazonium salt and their application for direct electrochemistry of myoglobin. Biosensors and Bioelectronics, 2015, 65, 159-165.	10.1	13
32	Facile surfactant-free synthesis and characterization of Fe ₃ O ₄ @3-aminophenol–formaldehyde core–shell magnetic microspheres. Journal of Materials Chemistry A, 2015, 3, 519-524.	10.3	62
33	Simultaneous voltammetric determination of dihydroxybenzene isomers at single-walled carbon nanohorn modified glassy carbon electrode. Sensors and Actuators B: Chemical, 2014, 198, 388-394.	7.8	36
34	Facile Synthesis of Porous PtM (M=Cu, Ni) Nanowires and Their Application as Efficient Electrocatalysts for Methanol Electrooxidation. ChemCatChem, 2014, 6, 2253-2257.	3.7	41
35	Wireless Electrochemiluminescence with Disposable Minidevice. Analytical Chemistry, 2014, 86, 8927-8931.	6.5	34
36	Synthesis of Convex Hexoctahedral Palladium@Gold Core–Shell Nanocrystals with {431} High-Index Facets with Remarkable Electrochemiluminescence Activities. ACS Nano, 2014, 8, 5953-5958.	14.6	76

#	Article	lF	CITATIONS
37	Facet-dependent electrocatalytic activities of Pd nanocrystals toward the electro-oxidation of hydrazine. Electrochemistry Communications, 2013, 37, 57-60.	4.7	26