
Gregory Denisov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5216850/publications.pdf Version: 2024-02-01

CRECORY DENISON

#	Article	lF	CITATIONS
1	High-Gain Wide-Band Gyrotron Traveling Wave Amplifier with a Helically Corrugated Waveguide. Physical Review Letters, 2000, 84, 2746-2749.	2.9	225
2	Gyrotron Traveling Wave Amplifier with a Helical Interaction Waveguide. Physical Review Letters, 1998, 81, 5680-5683.	2.9	217
3	110 GHz gyrotron with a built-in high-efficiency converter. International Journal of Electronics, 1992, 72, 1079-1091.	0.9	138
4	Ka-Band Gyrotron Traveling-Wave Tubes With the Highest Continuous-Wave and Average Power. IEEE Transactions on Electron Devices, 2014, 61, 4264-4267.	1.6	109
5	Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media. Review of Scientific Instruments, 2015, 86, 054705.	0.6	108
6	Theory and simulations of a gyrotron backward wave oscillator using a helical interaction waveguide. Applied Physics Letters, 2006, 89, 091504.	1.5	84
7	Compression of Frequency-Modulated Pulses using Helically Corrugated Waveguides and Its Potential for Generating Multigigawatt rf Radiation. Physical Review Letters, 2004, 92, 118301.	2.9	76
8	Mirror synthesis for gyrotron quasi-optical mode converters. Journal of Infrared, Millimeter and Terahertz Waves, 1995, 16, 735-744.	0.6	70
9	High power terahertz sources for spectroscopy and material diagnostics. Physics-Uspekhi, 2016, 59, 595-604.	0.8	69
10	Millimeter-Wave HF Relativistic Electron Oscillators. IEEE Transactions on Plasma Science, 1987, 15, 2-15.	0.6	68
11	Method for Synthesis of Waveguide Mode Converters. Radiophysics and Quantum Electronics, 2004, 47, 615-620.	0.1	68
12	High-power sub-terahertz source with a record frequency stability at up to 1 Hz. Scientific Reports, 2018, 8, 4317.	1.6	65
13	Development in Russia of Megawatt Power Gyrotrons for Fusion. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32, 337-342.	1.2	59
14	High-efficiency wideband gyro-TWTs and gyro-BWOs with helically corrugated waveguides. Radiophysics and Quantum Electronics, 2007, 50, 95-107.	0.1	58
15	First experimental tests of powerful 250 GHz gyrotron for future fusion research and collective Thomson scattering diagnostics. Review of Scientific Instruments, 2018, 89, 084702.	0.6	56
16	Experimental Demonstration of High-Efficiency Cyclotron-Autoresonance-Maser Operation. Physical Review Letters, 1995, 75, 3102-3105.	2.9	54
17	Megawatt Gyrotrons for ECR Heating and Current-Drive Systems in Controlled-Fusion Facilities. Radiophysics and Quantum Electronics, 2003, 46, 757-768.	0.1	52
18	Corrugated cylindrical resonators for short-wavelength relativistic microwave oscillators. Radiophysics and Quantum Electronics, 1982, 25, 407-413.	0.1	49

#	Article	IF	CITATIONS
19	Asymptotic Theory of High-Efficiency Converters of Higher-Order Waveguide Modes into Eigenwaves of Open Mirror Lines. Radiophysics and Quantum Electronics, 2004, 47, 283-296.	0.1	47
20	Perspective gyrotron with mode converter for co- and counter-rotation operating modes. Applied Physics Letters, 2015, 106, .	1.5	46
21	CW Operation of a W-Band High-Gain Helical-Waveguide Gyrotron Traveling-Wave Tube. IEEE Electron Device Letters, 2020, 41, 773-776.	2.2	46
22	Russian Gyrotrons: Achievements and Trends. IEEE Journal of Microwaves, 2021, 1, 260-268.	4.9	45
23	Use of Huygens' principle for analysis and synthesis of the fields in oversized waveguides. Radiophysics and Quantum Electronics, 2006, 49, 344-353.	0.1	41
24	Gyrotron Development for High Power THz Technologies at IAP RAS. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33, 715-723.	1.2	41
25	Cascade of Two \$W\$ -Band Helical-Waveguide Gyro-TWTs With High Gain and Output Power: Concept and Modeling. IEEE Transactions on Electron Devices, 2017, 64, 1305-1309.	1.6	41
26	Tokamak with Reactor Technologies (TRT): Concept, Missions, Key Distinctive Features and Expected Characteristics. Plasma Physics Reports, 2021, 47, 1092-1106.	0.3	41
27	Generation of 3 GW microwave pulses in X-band from a combination of a relativistic backward-wave oscillator and a helical-waveguide compressor. Physics of Plasmas, 2010, 17, .	0.7	39
28	Development of a Prototype of a 1-MW 105-156-GHz Multifrequency Gyrotron. Radiophysics and Quantum Electronics, 2004, 47, 396-404.	0.1	37
29	Experimental Study of the Pulsed Terahertz Gyrotron with Record-Breaking Power and Efficiency Parameters. Radiophysics and Quantum Electronics, 2014, 56, 497-507.	0.1	36
30	Resonant reflectors for free electron masers. Journal of Infrared, Millimeter and Terahertz Waves, 1995, 16, 745-752.	0.6	35
31	Terahertz gyrotrons: State of the art and prospects. Journal of Communications Technology and Electronics, 2014, 59, 792-797.	0.2	35
32	Status, Operation, and Extension of the ECRH System at ASDEX Upgrade. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37, 45-54.	1.2	34
33	Selective excitation of high-order modes in circular waveguides. Journal of Infrared, Millimeter and Terahertz Waves, 1992, 13, 1369-1385.	0.6	33
34	High-power electrostatic free-electron maser as a future source for fusion plasma heating: Experiments in the short-pulse regime. Physical Review E, 1999, 59, 6058-6063.	0.8	31
35	Experimental Study of Microwave Pulse Compression Using a Five-Fold Helically Corrugated Waveguide. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 1090-1096.	2.9	31
36	Powerful millimeter-wave generators based on the stimulated Cerenkov radiation of relativistic electron beams. Journal of Infrared, Millimeter and Terahertz Waves, 1984, 5, 1311-1332.	0.6	30

#	Article	IF	CITATIONS
37	Stabilization of gyrotron frequency by reflection from nonresonant and resonant loads. Technical Physics Letters, 2015, 41, 628-631.	0.2	30
38	Millimeter-Wave Gyrotron Research System. I. Description of the Facility. Radiophysics and Quantum Electronics, 2019, 61, 752-762.	0.1	30
39	Recent Upgrades and Extensions of the ASDEX Upgrade ECRH System. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32, 274-282.	1.2	28
40	Cyclotron autoresonance masers— recent experiments and prospects. International Journal of Electronics, 1992, 72, 969-981.	0.9	27
41	Principles of Synthesis of Multimode Waveguide Units. IEEE Transactions on Plasma Science, 2010, 38, 2825-2830.	0.6	27
42	CW Ka-Band Kilowatt-Level Helical-Waveguide Gyro-TWT. IEEE Transactions on Electron Devices, 2012, 59, 2250-2255.	1.6	27
43	Generation of "gigantic―ultra-short microwave pulses based on passive mode-locking effect in electron oscillators with saturable absorber in the feedback loop. Physics of Plasmas, 2016, 23, .	0.7	27
44	Microwave System for Feeding and Extracting Power To and From a Gyrotron Traveling-Wave Tube Through One Window. IEEE Electron Device Letters, 2014, 35, 789-791.	2.2	26
45	Zones of Frequency Locking by an External Signal in a Multimode Gyrotron of a Megawatt Power Level. Radiophysics and Quantum Electronics, 2016, 58, 893-904.	0.1	26
46	Powerful electromagnetic millimeter-wave oscillations produced by stimulated scattering of microwave radiation by relativistic electron beams. Journal of Infrared, Millimeter and Terahertz Waves, 1984, 5, 1389-1403.	0.6	24
47	Cyclotron resonance masers: State of the art. Radiophysics and Quantum Electronics, 1996, 39, 423-446.	0.1	24
48	Frequency and phase stabilization of a multimode gyrotron with megawatt power by an external signal. Technical Physics Letters, 2014, 40, 382-385.	0.2	24
49	Frequency Locking and Stabilization Regimes in High-Power Gyrotrons with Low-Q Resonators. Radiophysics and Quantum Electronics, 2016, 58, 684-693.	0.1	24
50	Principal Enhancement of THz-Range Gyrotron Parameters Using Injection Locking. IEEE Electron Device Letters, 2020, 41, 777-780.	2.2	24
51	Phase-Imposing Initiation of Cherenkov Superradiance Emission by an Ultrashort-Seed Microwave Pulse. Physical Review Letters, 2017, 118, 264801.	2.9	23
52	To the problem of energy recuperation in gyrotrons. Journal of Infrared, Millimeter and Terahertz Waves, 1995, 16, 459-471.	0.6	22
53	Mode Competition Effect on Frequency Locking of a Multimode Gyrotron by a Monochromatic External Signal. Radiophysics and Quantum Electronics, 2017, 59, 638-647.	0.1	21
54	First microwave generation in the FOM free-electron maser. Plasma Physics and Controlled Fusion, 1998, 40, A139-A156.	0.9	20

#	Article	IF	CITATIONS
55	Two-dimensional realization of a method for synthesis of waveguide converters. Radiophysics and Quantum Electronics, 2006, 49, 961-967.	0.1	20
56	Generation of a periodic sequence of powerful ultrashort pulses in a traveling wave tube with bleachable absorber in the feedback loop. Technical Physics Letters, 2015, 41, 836-839.	0.2	20
57	Generation of trains of ultrashort microwave pulses by two coupled helical gyro-TWTs operating in regimes of amplification and nonlinear absorption. Physics of Plasmas, 2017, 24, .	0.7	20
58	A High-Efficiency Second-Harmonic Gyrotron with a Depressed Collector. Journal of Infrared, Millimeter and Terahertz Waves, 2008, 29, 1004-1010.	0.6	19
59	Present Status of the New Multifrequency ECRH System for ASDEX Upgrade. IEEE Transactions on Plasma Science, 2008, 36, 324-331.	0.6	19
60	Proof-of-Principle Experiment on High-Power Gyrotron Traveling-Wave Tube With a Microwave System for Driving and Extracting Power Through One Window. IEEE Microwave and Wireless Components Letters, 2016, 26, 288-290.	2.0	19
61	A 250-Watts, 0.5-THz Continuous-Wave Second-Harmonic Gyrotron. IEEE Electron Device Letters, 2021, 42, 1666-1669.	2.2	19
62	Waveguide mode converters with step type coupling. Journal of Infrared, Millimeter and Terahertz Waves, 1991, 12, 131-140.	0.6	18
63	Low-power excitation of gyrotron-type modes in a cylindrical waveguide using quasi-optical techniques. International Journal of Electronics, 1995, 79, 215-226.	0.9	18
64	High-Efficient Mode Converter for ITER Gyrotron. Journal of Infrared, Millimeter and Terahertz Waves, 2005, 26, 771-785.	0.6	18
65	A high-speed quasi-optical wave phase switch based on the induced photoconductivity effect in silicon. Technical Physics Letters, 2007, 33, 735-737.	0.2	18
66	Gyrotron Frequency Stabilization by a Weak Reflected Wave. Radiophysics and Quantum Electronics, 2016, 58, 673-683.	0.1	18
67	Optically controlled semiconductor microwave modulator with nanosecond response. Technical Physics Letters, 2011, 37, 368-370.	0.2	17
68	Millimeter-Wave Tunable Notch Filter Based on Waveguide Extension for Plasma Diagnostics. IEEE Transactions on Plasma Science, 2014, 42, 1685-1689.	0.6	17
69	Cyclotron Resonance Maser With Zigzag Quasi-Optical Transmission Line: Concept and Modeling. IEEE Transactions on Electron Devices, 2021, 68, 5846-5850.	1.6	17
70	Progress and First Results With the New Multifrequency ECRH System for ASDEX Upgrade. IEEE Transactions on Plasma Science, 2009, 37, 395-402.	0.6	16
71	Nanosecond Laser-Driven Semiconductor Switch for 70ÂGHz Microwave Radiation. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33, 638-648.	1.2	16
72	Nanosecond Microwave Semiconductor Switches for 258…266ÂGHz. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36, 845-855.	1.2	16

#	Article	lF	CITATIONS
73	W-Band 5 MW Pulse Relativistic Gyrotron. IEEE Transactions on Electron Devices, 2017, 64, 1865-1867.	1.6	16
74	Mode content analysis from intensity measurements in a few cross sections of oversized waveguides. Journal of Infrared, Millimeter and Terahertz Waves, 1997, 18, 1323-1334.	0.6	15
75	Minimization of Diffraction Losses in Big Gaps of Multi-Mode Waveguides. Journal of Infrared, Millimeter and Terahertz Waves, 2005, 26, 953-966.	0.6	15
76	New TEO1 Waveguide Bends. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30, 556-565.	1.2	15
77	A 45-GHz/20-kW Gyrotron-Based Microwave Setup for the Fourth-Generation ECR Ion Sources. IEEE Transactions on Electron Devices, 2018, 65, 3963-3969.	1.6	15
78	The conversion of waves in a bent waveguide with a variable curvature. Radiophysics and Quantum Electronics, 1990, 33, 540-545.	0.1	14
79	Observation of the high-Q modes inside the resonance zone of two-dimensional Bragg structures. Applied Physics Letters, 2008, 92, .	1.5	14
80	Q-switching in the electron backward-wave oscillator. Physics of Plasmas, 2011, 18, .	0.7	14
81	Eigenmodes evolution due to changing the shape of the waveguide cross-section. Journal of Infrared, Millimeter and Terahertz Waves, 1997, 18, 733-744.	0.6	13
82	Numerical Simulation of Waveguide TM01-TE11 Mode Converter Using FDTD Method. Journal of Infrared, Millimeter and Terahertz Waves, 2005, 26, 341-361.	0.6	13
83	Nonlinear nonequilibrium processes in a silicon switch of high-power microwave radiation. Bulletin of the Russian Academy of Sciences: Physics, 2009, 73, 91-95.	0.1	13
84	Experimental results on microwave pulse compression using helically corrugated waveguide. Journal of Applied Physics, 2010, 108, 054908.	1.1	13
85	Millimeter Wave Multi-mode Transmission Line Components. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32, 343-357.	1.2	13
86	Development of Waveguide Semiconductor Switches of Microwave Radiation in the 70- and 260-ghz Ranges. Radiophysics and Quantum Electronics, 2014, 57, 509-518.	0.1	13
87	A Helical-Waveguide Gyro-TWT at the Third Cyclotron Harmonic. IEEE Transactions on Electron Devices, 2015, 62, 3387-3392.	1.6	13
88	Subterahertz Nanosecond Switches Driven by Second-Long Laser Pulses. IEEE Transactions on Terahertz Science and Technology, 2017, 7, 225-227.	2.0	13
89	An Experimental Study of the Influence of an External Signal on the Generation Mode of a Megawatt-Power Gyrotron. Technical Physics Letters, 2018, 44, 473-475.	0.2	13
90	Switching of Subterahertz Waves Within a Duration Range of Ten Orders of Magnitude. Radiophysics and Quantum Electronics, 2019, 61, 603-613.	0.1	13

#	Article	IF	CITATIONS
91	Development of 1 mw output power level gyrotron for ITER. Plasma Devices and Operations, 1998, 6, 111-117.	0.6	12
92	Experimental observation of superradiance in the stimulated scattering of an intense microwave pump wave by a counterpropagating subnanosecond high-current relativistic electron bunch. JETP Letters, 2005, 82, 263-266.	0.4	12
93	Automated Microwave Complex on the Basis of a Continuous-Wave Gyrotron with an Operating Frequency of 263 GHz and an Output Power of 1 kW. Radiophysics and Quantum Electronics, 2016, 58, 639-648.	0.1	12
94	New Radiation Input/Output Systems for Millimeter-Wave Gyrotron Traveling-Wave Tubes. Radiophysics and Quantum Electronics, 2016, 58, 769-776.	0.1	12
95	Nonlinear Cyclotron Resonance Absorber for a Microwave Subnanosecond Pulse Generator Powered by a Helical-Waveguide Gyrotron Traveling-Wave Tube. Physical Review Applied, 2020, 13, .	1.5	12
96	Simple millimeter wave notch filters based on rectangular waveguide extensions. Journal of Infrared, Millimeter and Terahertz Waves, 1995, 16, 1231-1238.	0.6	11
97	Methods of Wavebeam Phase Front Reconstruction Using Intensity Measurements. Journal of Infrared, Millimeter and Terahertz Waves, 2000, 21, 83-90.	0.6	11
98	Studies of a Gyrotron Traveling-Wave Tube with Helically Corrugated Waveguides at IAP Ras: Results and Prospects. Radiophysics and Quantum Electronics, 2019, 62, 455-466.	0.1	11
99	Multifrequency gyrotron with high-efficiency synthesized waveguide converter. Technical Physics Letters, 2007, 33, 350-352.	0.2	10
100	Microwave source of multigigawatt peak power based on a relativistic backward-wave oscillator and a compressor. Technical Physics, 2011, 56, 269-273.	0.2	10
101	Time-domain theory of low-Q gyrotrons with frequency-dependent reflections of output radiation. Physics of Plasmas, 2018, 25, .	0.7	10
102	An Experimental Study of the External-Signal Influence on the Oscillation Regime of a Megawatt Gyrotron. Radiophysics and Quantum Electronics, 2019, 62, 481-489.	0.1	10
103	Method for achievement of a multigigawatt peak power by compressing microwave pulses of a relativistic backward-wave oscillator in a helical waveguide. Radiophysics and Quantum Electronics, 2007, 50, 36-48.	0.1	9
104	Method for synthesis of wideband multimode waveguide elements. Radiophysics and Quantum Electronics, 2007, 50, 720-725.	0.1	9
105	A traveling-wave ring resonator with Bragg deflectors in a two-stage terahertz free-electron laser. Technical Physics Letters, 2014, 40, 730-734.	0.2	9
106	Development status of gyrotron setup for ITER ECW system. , 2015, , .		9
107	Quasi-optical multiplexer based on reflecting diffraction grating. Journal of Infrared, Millimeter and Terahertz Waves, 1991, 12, 1035-1043.	0.6	8
108	Cyclotron autoresonance maser with high Doppler frequency up-conversion. Journal of Infrared, Millimeter and Terahertz Waves, 1992, 13, 1857-1873.	0.6	8

#	Article	IF	CITATIONS
109	Mode content analysis from intensity measurements in a few cross sections of oversized waveguides. Journal of Infrared, Millimeter and Terahertz Waves, 1997, 18, 1505-1516.	0.6	8
110	Efficiency Enhancement of Components Based on Talbot Effect. Journal of Infrared, Millimeter and Terahertz Waves, 2007, 28, 923-935.	0.6	8
111	Transmission Line for 258ÂGHz Gyrotron DNP Spectrometry. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32, 823-837.	1.2	8
112	Comparison of Different Methods for Calculating Gyrotron Quasi-Optical Mode Converters. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34, 62-70.	1.2	8
113	High-Power Ka-Band Transmission Line with a Frequency Bandwidth of 1 GHZ. Radiophysics and Quantum Electronics, 2016, 58, 777-788.	0.1	8
114	K _a -Band 100-kW Subnanosecond Pulse Generator Mode-Locked by a Nonlinear Cyclotron Resonance Absorber. Physical Review Applied, 2021, 16, .	1.5	8
115	On the resonant scattering at guide dielectric windows. Journal of Infrared, Millimeter and Terahertz Waves, 1996, 17, 933-945.	0.6	7
116	Synthesis of the sequence of phase correctors forming the desired field. Radiophysics and Quantum Electronics, 2004, 47, 966-973.	0.1	7
117	Enhancement of cavity selectivity in relativistic gyrotrons operated at axisymmetric modes. Radiophysics and Quantum Electronics, 2008, 51, 756-767.	0.1	7
118	Series of powerful CW gyrotrons in the range 105 – 140 GHz. EPJ Web of Conferences, 2017, 147, 04003.	0.1	7
119	Ultrawideband Millimeter-Wave Oscillators Based on Two Coupled Gyro-TWTs With Helical Waveguide. IEEE Transactions on Electron Devices, 2018, 65, 2334-2339.	1.6	7
120	Theoretical and Experimental Investigations of Terahertz-Range Gyrotrons with Frequency and Spectrum Control. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 1131-1143.	1.2	7
121	Investigation of mode interaction for a gyrotron with dense mode spectrum. Journal of Electromagnetic Waves and Applications, 2021, 35, 19-26.	1.0	7
122	Methods of Calculation and Parameter Control of the Eigenmodes of a Simple Two-Mirror Cavity. Radiophysics and Quantum Electronics, 2000, 43, 663-670.	0.1	6
123	Recent experiments and simulations on gyro-TWTs with helically corrugated waveguides. , 2016, , .		6
124	Peculiarities of Optimizing the Subsystems of a Continuous-Wave Gyrotron with a Generation Frequency of 0.26 THz at the Fundamental Cyclotron Resonance. Radiophysics and Quantum Electronics, 2016, 58, 649-659.	0.1	6
125	Generation of a Periodic Series of High-Power Ultra-Short Pulses in a Gyro-TWT with a Bleachable Cyclotron Absorber in the Feedback Circuit. Radiophysics and Quantum Electronics, 2016, 58, 598-606.	0.1	6
126	Quasi-Optical Orthomode Splitters for Input–Output of a Powerful <inline-formula> <tex-math notation="LaTeX">\${W}\$ </tex-math> </inline-formula> -Band Gyro-TWT. IEEE Transactions on Electron Devices, 2018, 65, 4600-4606.	1.6	6

#	Article	IF	CITATIONS
127	First high power experiments with the Dutch free electron maser. Physics of Plasmas, 1998, 5, 2029-2036.	0.7	5
128	Fast quasi-optical phase shifter based on the effect of induced photo conductivity in silicon. Radiophysics and Quantum Electronics, 2007, 50, 786-793.	0.1	5
129	W-band helical-waveguide gyro-TWTs yielding high gain and high output power: Design and simulations. , 2017, , .		5
130	Locking of the Frequency of a Multimode Gyrotron by a Quasi-Monochromatic External Signal. Radiophysics and Quantum Electronics, 2019, 62, 490-505.	0.1	5
131	Dynamics of Multimode Processes at the Leading Edge of the Accelerating-Voltage Pulse in a Gyrotron Driven by an External Signal. Radiophysics and Quantum Electronics, 2020, 63, 381-391.	0.1	5
132	Phase Locking of a Gyrotron with Low-Frequency Voltage and Current Fluctuations by an External Monochromatic Signal. Radiophysics and Quantum Electronics, 2020, 63, 392-402.	0.1	5
133	Planar two-dimensional Bragg resonators with corrugated surfaces: Theory and experiment. Technical Physics Letters, 2000, 26, 348-351.	0.2	4
134	TE01-TEM00 Quasi-Optical Mode Converter. Journal of Infrared, Millimeter and Terahertz Waves, 2000, 21, 187-192.	0.6	4
135	Mode dynamics in a free electron maser with broadband frequency-dispersive feedback. Physics of Plasmas, 2001, 8, 638-642.	0.7	4
136	Title is missing!. Journal of Infrared, Millimeter and Terahertz Waves, 2003, 24, 1677-1685.	0.6	4
137	Oversized \$Ka\$-Band Traveling-Wave Window for a High-Power Transmission. IEEE Transactions on Microwave Theory and Techniques, 2006, 54, 4130-4135.	2.9	4
138	RF Pulse Compression Using Helically Corrugated Waveguides. AIP Conference Proceedings, 2006, , .	0.3	4
139	Gyro-TWTs and Gyro-BWOs with helically corrugated waveguides. , 2007, , .		4
140	Broad band matched windows for gyrotrons. , 2009, , .		4
141	Calculation and Optimization of 3D Waveguiding System with Help of Integral Equation Method. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30, 319-327.	1.2	4
142	ECRH for JET: A feasibility study. Fusion Engineering and Design, 2011, 86, 805-809.	1.0	4
143	Investigation into Microwave Absorption in Semiconductors for Frequency-Multiplication Devices and Radiation-Output Control of Continuous and Pulsed Gyrotrons. Semiconductors, 2020, 54, 1069-1074.	0.2	4
144	Influence of an External Signal with Harmonic or Stepwise-Modulated Parameters on the High-Power Gyrotron Operation. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42, 117-129.	1.2	4

#	Article	IF	CITATIONS
145	Phase-Locking of Second-Harmonic Gyrotrons for Providing MW-Level Output Power. IEEE Transactions on Electron Devices, 2022, 69, 754-758.	1.6	4
146	Gyro-TWT and Gyro-BWO with a Microwave Circuit in the Form of Zigzag Quasi-optical Transmission Line. , 2021, , .		4
147	Multiparametric gyrotron power control during microwave processing of materials. Technical Physics Letters, 2013, 39, 140-142.	0.2	3
148	Recent results in development in Russia of megawatt power gyrotrons for fusion. , 2013, , .		3
149	A five-channel quasi-optical multiplexer of 12- to 90-GHz frequency range. Technical Physics Letters, 2017, 43, 1037-1040.	0.2	3
150	Formation of Short Microwave Pulses by Laser-Driven GaAs Switch with Sub-Nanosecond Transient Response. , 2021, , .		3
151	The Concept of a Gyrotron with Megawatt Output at Both First and Second Cyclotron Harmonics for Plasma Heating in Spherical Tokamaks. Radiophysics and Quantum Electronics, 2020, 63, 345-353.	0.1	3
152	Concept design of the megawatt power level gyrotron stabilized by a low-power signal for DEMO project. Nuclear Fusion, 2022, 62, 036020.	1.6	3
153	Specific features of mode spectrum of planar structures with two-dimensional Bragg corrugation (theory and "cold―experiment). Radiophysics and Quantum Electronics, 2005, 48, 748-761.	0.1	2
154	Fast quasi-optical phase shifter based on induced photoconductivity in silicon. , 2007, , .		2
155	Experimental observation of high-Q modes at the center of a resonance band of two-dimensional Bragg structures. Technical Physics Letters, 2007, 33, 117-121.	0.2	2
156	Experimental study of a gyrotron operated at the second gyrofrequency harmonic with the single-stage energy recovery. Radiophysics and Quantum Electronics, 2008, 51, 768-771.	0.1	2
157	Modeling of dynamic effects in a laser-driven semiconductor switch of high-power microwaves. , 2008, , .		2
158	Development of helical-waveguide gyro-TWT and gyro-BWO. , 2009, , .		2
159	Study of Talbot Effects in a Bent Waveguide with Constant Curvature. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30, 349-356.	1.2	2
160	Synthesized quasi-optical TE02-HE11 mode converter. , 2009, , .		2
161	Nanosecond semiconductor modulator of 66–72 GHz microwaves controlled by an optical laser. , 2010, , .		2
162	Development of gyro-devices at IAP/GYCOM in the range from gigahertz to terahertz. , 2016, , .		2

#	Article	lF	CITATIONS
163	Using the Talbot Effect for Summation of Microwave Signals in the Millimeter-Wavelength Band. Radiophysics and Quantum Electronics, 2016, 58, 789-792.	0.1	2
164	From millimeter to microns – IAP RAS powerful sources for various applications. EPJ Web of Conferences, 2018, 195, 00001.	0.1	2
165	Dynamics of Multimode Gyrotron Locked by Quasi-Monochromatic External Signal. , 2019, , .		2
166	Ohmic quality of resonators shaped by corrugated guide sections at frequencies near bragg stop bands. Journal of Infrared, Millimeter and Terahertz Waves, 1997, 18, 595-603.	0.6	1
167	Efficient Broad Band HE11 Mode Exciter. Journal of Infrared, Millimeter and Terahertz Waves, 2002, 23, 1171-1178.	0.6	1
168	Numerical Simulation of a TM01–TE11 Waveguide Mode Converter by the FDTD Method. Radiophysics and Quantum Electronics, 2005, 48, 185-194.	0.1	1
169	Modeling of dynamic effects in a laser-driven semiconductor switch of powerful microwave radiation. , 2008, , .		1
170	High efficient gyrotron-based systems for technological applications. , 2008, , .		1
171	Synthesis principles for multimode waveguide units. , 2010, , .		1
172	P3-18: High-efficient synthesized launcher for coaxial cavity gyrotron. , 2010, , .		1
173	The Collector of a Megawatt Gyrotron with a Static Nonadiabatic Magnetic Field. Radiophysics and Quantum Electronics, 2013, 56, 379-384.	0.1	1
174	Generators of High-Power Ultrashort Microwave Pulses with a Saturable Absorber in a Feedback Circuit. Radiophysics and Quantum Electronics, 2017, 59, 613-628.	0.1	1
175	Development of gyro-devices at IAP/GYCOM. , 2017, , .		1
176	An Experimental Study of the Influence of the Longitudinal Magnetic-Field Distribution Profile on the Output Characteristics of a Gyrotron. Instruments and Experimental Techniques, 2021, 64, 97-101.	0.1	1
177	Microwave Setup of a Megawatt Power Level for the ECR Plasma Heating and Current Drive System of the T-15MD Tokamak. Radiophysics and Quantum Electronics, 2020, 63, 332-344.	0.1	1
178	Wave diffraction at the shielded discotinuity of a multimode axisymmetric waveguide. Radiophysics and Quantum Electronics, 1989, 32, 568-571.	0.1	0
179	Theory of cyclotron autoresonance masers with open electrodynamic system. Radiophysics and Quantum Electronics, 1990, 33, 718-727.	0.1	0
180	Gyrotron cavity with an optimized profile. Journal of Infrared, Millimeter and Terahertz Waves, 1997, 18, 1453-1463.	0.6	0

#	Article	IF	CITATIONS
181	10-MW, W-band RF source for advanced accelerator research. AIP Conference Proceedings, 2001, , .	0.3	Ο
182	High Power RF Generation by Compression of Frequency Modulated Pulses. AIP Conference Proceedings, 2003, , .	0.3	0
183	Mode Selectivity Enhancement in Cavities of Relativistic Gyrotrons. , 2006, , .		0
184	Method for synthesis of wideband multimode waveguide units. , 2007, , .		0
185	Calculation of 3-D waveguide structures with EFIE. , 2007, , .		0
186	Recent results of development in Russia of high power gyrotrons. , 2007, , .		0
187	New test results of 170 GHz/1MW/50%/CW gyrotron for ITER. , 2007, , .		Ο
188	Calculation and optimization of three-dimensional waveguide systems by the integral equation method. Radiophysics and Quantum Electronics, 2008, 51, 671-680.	0.1	0
189	Efficiency enhancement of gyrotron based setups for technological applications. , 2008, , .		Ο
190	Surface leaking waves as operating modes for gyrotrons. , 2009, , .		0
191	Gyrotron-based systems for microwave technologies. , 2010, , .		0
192	P3-21: Principles of synthesis of multimode waveguide units. , 2010, , .		0
193	Frequency multiplication in relativistic gyro-klystron operating with combination of TE-TM modes. , 2013, , .		Ο
194	Design and experiments of a five-fold helically corrugated waveguide for microwave pulse compression. , 2015, , .		0
195	Power Combiner Based on the Talbot Effect in an Oversized Rectangular Waveguide. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36, 537-541.	1.2	0
196	Andrey Viktorovich Gaponov-Grekhov (on his 90th birthday). Physics-Uspekhi, 2016, 59, 613-615.	0.8	0
197	Improving the Efficiency of Quasi-Optical Bragg Reflectors. Radiophysics and Quantum Electronics, 2017, 59, 667-673.	0.1	0
198	A Waveguide Antenna with an Extended Angular Range for Remote Steering of Wave-Beam Direction. Technical Physics Letters, 2018, 44, 213-216.	0.2	0

#	Article	IF	CITATIONS
199	Gyrotron Spectrum Control by an External Quasi-Monochromatic Signal with Harmonic or Stepwise (Regular or Random) Modulation of Parameters. , 2021, , .		0
200	ON THE WAY TO A MULTI-FREQUENCY ECRH SYSTEM FOR ASDEX UPGRADE. , 2009, , .		0
201	Zakharii Fishelevich Krasilnik (on his 70th birthday). Physics-Uspekhi, 2018, 61, 111-112.	0.8	0
202	The progress in high frequency, high power gyrotron development in Russia. , 2020, , .		0
203	System of Electron Cyclotron Heating at the TRT Tokamak. Plasma Physics Reports, 2021, 47, 1158-1168.	0.3	0
204	Frequency Tuning and Spectrum Control in Sub-THz Gyrotrons. , 2020, , .		0
205	The Progress in the Development of Gyrotrons for Plasma Installations in Russia. , 2020, , .		0
206	Megawatt Power Gyrotron with Generation Regimes at the 1 st and 2 nd Cyclotron Harmonics. , 2021, , .		0