Pilar Sandoval

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5216682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesothelial-to-Mesenchymal Transition and Exosomes in Peritoneal Metastasis of Ovarian Cancer. International Journal of Molecular Sciences, 2021, 22, 11496.	4.1	31
2	Ovarian Cancer-Driven Mesothelial-to-Mesenchymal Transition is Triggered by the Endothelin-1/β-arr1 Axis. Frontiers in Cell and Developmental Biology, 2021, 9, 764375.	3.7	4
3	Increased miR-7641 Levels in Peritoneal Hyalinizing Vasculopathy in Long-Term Peritoneal Dialysis Patients. International Journal of Molecular Sciences, 2020, 21, 5824.	4.1	4
4	Caveolin1 and YAP drive mechanically induced mesothelial to mesenchymal transition and fibrosis. Cell Death and Disease, 2020, 11, 647.	6.3	39
5	Mesothelial-to-Mesenchymal Transition Contributes to the Generation of Carcinoma-Associated Fibroblasts in Locally Advanced Primary Colorectal Carcinomas. Cancers, 2020, 12, 499.	3.7	22
6	Editorial: Molecular Mechanisms and New Therapeutic Targets in Epithelial to Mesenchymal Transition (EMT) and Fibrosis. Frontiers in Pharmacology, 2020, 10, 1556.	3.5	2
7	Prostaglandin F2α-induced Prostate Transmembrane Protein, Androgen Induced 1 mediates ovarian cancer progression increasing epithelial plasticity. Neoplasia, 2019, 21, 1073-1084.	5.3	8
8	Epithelial-To-Mesenchymal Transition and Migration of Human Peritoneal Mesothelial Cells Undergoing Senescence. Peritoneal Dialysis International, 2019, 39, 35-41.	2.3	8
9	Surgical Techniques for Catheter Placement and 5/6 Nephrectomy in Murine Models of Peritoneal Dialysis. Journal of Visualized Experiments, 2018, , .	0.3	1
10	Mesothelialâ€ŧoâ€mesenchymal transition as a possible therapeutic target in peritoneal metastasis of ovarian cancer. Journal of Pathology, 2017, 242, 140-151.	4.5	83
11	Genomic reprograming analysis of the Mesothelial to Mesenchymal Transition identifies biomarkers in peritoneal dialysis patients. Scientific Reports, 2017, 7, 44941.	3.3	38
12	Mesothelial-to-mesenchymal transition in the pathogenesis of post-surgical peritoneal adhesions. Journal of Pathology, 2016, 239, 48-59.	4.5	82
13	Matrix cross-linking lysyl oxidases are induced in response to myocardial infarction and promote cardiac dysfunction. Cardiovascular Research, 2016, 109, 67-78.	3.8	103
14	Biocompatible Dialysis Solutions Preserve Peritoneal Mesothelial Cell and Vessel Wall Integrity. A Case-Control Study on Human Biopsies. Peritoneal Dialysis International, 2016, 36, 129-134.	2.3	52
15	Nebivolol, a β1-adrenergic blocker, protects from peritoneal membrane damage induced during peritoneal dialysis. Oncotarget, 2016, 7, 30133-30146.	1.8	10
16	miRâ€9â€5p suppresses proâ€fibrogenic transformation of fibroblasts and prevents organ fibrosis by targeting <scp>NOX</scp> 4 and <scp>TGFBR</scp> 2. EMBO Reports, 2015, 16, 1358-1377.	4.5	87
17	Rapamycin Protects from Type-I Peritoneal Membrane Failure Inhibiting the Angiogenesis, Lymphangiogenesis, and Endo-MT. BioMed Research International, 2015, 2015, 1-15.	1.9	24
18	Elevated expression levels of lysyl oxidases protect against aortic aneurysm progression in Marfan syndrome. Journal of Molecular and Cellular Cardiology, 2015, 85, 48-57.	1.9	30

PILAR SANDOVAL

#	Article	IF	CITATIONS
19	A Pathogenetic Role for Endothelin-1 in Peritoneal Dialysis-Associated Fibrosis. Journal of the American Society of Nephrology: JASN, 2015, 26, 173-182.	6.1	31
20	The Mesothelial Origin of Carcinoma Associated-Fibroblasts in Peritoneal Metastasis. Cancers, 2015, 7, 1994-2011.	3.7	72
21	Apicobasal Polarity Controls Lymphocyte Adhesion to Hepatic Epithelial Cells. Cell Reports, 2014, 8, 1879-1893.	6.4	15
22	Incidence of human papillomavirus-related oropharyngeal cancer and outcomes after chemoradiation in a population of heavy smokers. Head and Neck, 2014, 36, 782-786.	2.0	22
23	Carcinomaâ€associated fibroblasts derive from mesothelial cells via mesothelialâ€toâ€mesenchymal transition in peritoneal metastasis. Journal of Pathology, 2013, 231, 517-531.	4.5	134
24	Functional Relevance of the Switch of VEGF Receptors/Co-Receptors during Peritoneal Dialysis-Induced Mesothelial to Mesenchymal Transition. PLoS ONE, 2013, 8, e60776.	2.5	35
25	Tamoxifen Ameliorates Peritoneal Membrane Damage by Blocking Mesothelial to Mesenchymal Transition in Peritoneal Dialysis. PLoS ONE, 2013, 8, e61165.	2.5	55
26	Inhibition of Transforming Growth Factor-Activated Kinase 1 (TAK1) Blocks and Reverses Epithelial to Mesenchymal Transition of Mesothelial Cells. PLoS ONE, 2012, 7, e31492.	2.5	46
27	Analysis of expression and function of the inhibitory receptor ILT2 in lymphocytes from patients with autoimmune thyroid disease. European Journal of Endocrinology, 2011, 165, 129-136.	3.7	14
28	Blocking TGF-β1 Protects the Peritoneal Membrane from Dialysate-Induced Damage. Journal of the American Society of Nephrology: JASN, 2011, 22, 1682-1695.	6.1	146
29	PPAR-Î ³ agonist rosiglitazone protects peritoneal membrane from dialysis fluid-induced damage. Laboratory Investigation, 2010, 90, 1517-1532.	3.7	62