H John B Birks

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5215867/h-john-b-birks-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

291 22,169 80 137 g-index

303 24,149 5 7.1 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
291	Temperature reconstructions for the last 1.74-Ma on the eastern Tibetan Plateau based on a novel pollen-based quantitative method. <i>Global and Planetary Change</i> , 2021 , 199, 103433	4.2	4
2 90	The human dimension of biodiversity changes on islands. <i>Science</i> , 2021 , 372, 488-491	33.3	23
289	Rate-of-change analysis in paleoecology revisited: A new approach. <i>Review of Palaeobotany and Palynology</i> , 2021 , 293, 104483	1.7	5
288	Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years. <i>Science Advances</i> , 2020 , 6, eaay6193	14.3	26
287	Reflections on the Use of Ecological Attributes and Traits in Quaternary Botany. <i>Frontiers in Ecology and Evolution</i> , 2020 , 8,	3.7	4
286	Chemical variations in Quercus pollen as a tool for taxonomic identification: Implications for long-term ecological and biogeographical research. <i>Journal of Biogeography</i> , 2020 , 47, 1298-1309	4.1	5
285	distantia: an open-source toolset to quantify dissimilarity between multivariate ecological time-series. <i>Ecography</i> , 2020 , 43, 660-667	6.5	4
284	Ecological memory at millennial time-scales: the importance of data constraints, species longevity and niche features. <i>Ecography</i> , 2020 , 43, 1-10	6.5	43
283	Angiosperms versus gymnosperms in the Cretaceous. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 30879-30881	11.5	0
282	Transgressive Events since the Late Pleistocene in the Yellow River Delta: Grain-size Distribution and Palynological Results. <i>Acta Geologica Sinica</i> , 2020 , 94, 1194	0.7	
281	Compositional turnover and variation in Eemian pollen sequences in Europe. <i>Vegetation History and Archaeobotany</i> , 2020 , 29, 101-109	2.6	9
280	Patterns of modern pollen and plant richness across northern Europe. <i>Journal of Ecology</i> , 2019 , 107, 1662-1677	6	21
279	Contributions of Quaternary botany to modern ecology and biogeography. <i>Plant Ecology and Diversity</i> , 2019 , 12, 189-385	2.2	41
278	Paleoecology 2019 , 494-504		3
277	Modern pollen assemblages and their relationships to vegetation and climate in the Lhasa Valley, Tibetan Plateau, China. <i>Quaternary International</i> , 2018 , 467, 210-221	2	13
276	One hundred years of Quaternary pollen analysis 1916\(\textit{\Omega} 016. \textit{Vegetation History and Archaeobotany} \), 2018 , 27, 271-309	2.6	34
275	Are diversity trends in western Scandinavia influenced by post-glacial dispersal limitation?. <i>Journal of Vegetation Science</i> , 2018 , 29, 360-370	3.1	12

(2015-2018)

274	Stay or go Ihow topographic complexity influences alpine plant population and community responses to climate change. <i>Perspectives in Plant Ecology, Evolution and Systematics</i> , 2018 , 30, 41-50	3	88
273	Quantifying the effects of land use and climate on Holocene vegetation in Europe. <i>Quaternary Science Reviews</i> , 2017 , 171, 20-37	3.9	58
272	Testing the effect of the Himalayan mountains as a physical barrier to gene flow in Hippophae tibetana Schlect. (Elaeagnaceae). <i>PLoS ONE</i> , 2017 , 12, e0172948	3.7	13
271	A novel procedure for pollen-based quantitative paleoclimate reconstructions and its application in China. <i>Science China Earth Sciences</i> , 2017 , 60, 2059-2066	4.6	15
270	Detecting patterns of change in a long pollen-stratigraphical sequence from Funza, Colombia [A comparison of new and traditional numerical approaches. <i>Review of Palaeobotany and Palynology</i> , 2016 , 234, 94-109	1.7	6
269	How foreign is the past?. <i>Nature</i> , 2016 , 538, E1-E2	50.4	3
268	The fourth dimension of vegetation. <i>Science</i> , 2016 , 354, 412-413	33.3	26
267	Modern pollenplant richness and diversity relationships exist along a vegetational gradient in southern Norway. <i>Holocene</i> , 2016 , 26, 163-175	2.6	56
266	How have studies of ancient DNA from sediments contributed to the reconstruction of Quaternary floras?. <i>New Phytologist</i> , 2016 , 209, 499-506	9.8	49
265	Does pollen-assemblage richness reflect floristic richness? A review of recent developments and future challenges. <i>Review of Palaeobotany and Palynology</i> , 2016 , 228, 1-25	1.7	102
264	Topography-driven isolation, speciation and a global increase of endemism with elevation. <i>Global Ecology and Biogeography</i> , 2016 , 25, 1097-1107	6.1	156
263	Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia. <i>Nature Communications</i> , 2016 , 7, 11967	17.4	50
262	East Asian summer monsoon precipitation variability since the last deglaciation. <i>Scientific Reports</i> , 2015 , 5, 11186	4.9	360
261	Stability of alpine vegetation over 50 years in central Norway. <i>Folia Geobotanica</i> , 2015 , 50, 39-48	1.4	6
260	Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling. <i>Global Change Biology</i> , 2015 , 21, 676-97	11.4	116
259	Kohonen Artificial Neural Networks and the IndVal Index as Supplementary Tools for the Quantitative Analysis of Palaeoecological Data. <i>Geochronometria</i> , 2015 , 42,	1	5
258	Disjunct populations of European vascular plant species keep the same climatic niches. <i>Global Ecology and Biogeography</i> , 2015 , 24, 1401-1412	6.1	26
257	Alpine biodiversity and refugia in a changing climate. <i>Biodiversity</i> , 2015 , 16, 193-195	0.7	6

256	Some reflections on the refugium concept and its terminology in historical biogeography, contemporary ecology and global-change biology. <i>Biodiversity</i> , 2015 , 16, 196-212	0.7	24
255	Holocene changes in vegetation composition in northern Europe: why quantitative pollen-based vegetation reconstructions matter. <i>Quaternary Science Reviews</i> , 2014 , 90, 199-216	3.9	81
254	Reconstructing palaeoclimatic variables from fossil pollen using boosted regression trees: comparison and synthesis with other quantitative reconstruction methods. <i>Quaternary Science Reviews</i> , 2014 , 88, 69-81	3.9	30
253	The relationship between vegetation composition, vegetation zones and modern pollen assemblages in Setesdal, southern Norway. <i>Holocene</i> , 2014 , 24, 985-1001	2.6	24
252	Aquatic ecotones-new insights from Arctic Canada. <i>Journal of Phycology</i> , 2014 , 50, 607-9	3	3
251	Identifying the driving factors behind observed elevational range shifts on European mountains. <i>Global Ecology and Biogeography</i> , 2014 , 23, 876-884	6.1	86
250	A comparison of novel and traditional numerical methods for the analysis of modern pollen assemblages from major vegetation Landform types. <i>Review of Palaeobotany and Palynology</i> , 2014 , 210, 22-36	1.7	16
249	Challenges in the presentation and analysis of plant-macrofossil stratigraphical data. <i>Vegetation History and Archaeobotany</i> , 2014 , 23, 309-330	2.6	38
248	Creating spatially continuous maps of past land cover from point estimates: A new statistical approach applied to pollen data. <i>Ecological Complexity</i> , 2014 , 20, 127-141	2.6	20
247	Lateglacial and early-Holocene climate variability reconstructed from multi-proxy records on And Ja, northern Norway. <i>Quaternary Science Reviews</i> , 2014 , 89, 108-122	3.9	18
246	Arctic Holocene proxy climate database Thew approaches to assessing geochronological accuracy and encoding climate variables. <i>Climate of the Past</i> , 2014 , 10, 1605-1631	3.9	69
245	Microrefugia and Shifts of Hippophae tibetana (Elaeagnaceae) on the north side of Mt. Qomolangma (Mt. Everest) during the last 25000 years. <i>PLoS ONE</i> , 2014 , 9, e97601	3.7	1
244	Regional climate model simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation. <i>Climate of the Past</i> , 2014 , 10, 661-680	3.9	54
243	Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum Lextending the concept of pollen source area to pollen-based climate reconstructions from large lakes. <i>Climate of the Past</i> , 2014 , 10, 21-39	3.9	75
242	To what extent did changes in July temperature influence Lateglacial vegetation patterns in NW Europe?. <i>Quaternary Science Reviews</i> , 2014 , 106, 262-277	3.9	33
241	Looking forward through the past: identification of 50 priority research questions in palaeoecology. <i>Journal of Ecology</i> , 2014 , 102, 256-267	6	168
240	Validation of climate model-inferred regional temperature change for late-glacial Europe. <i>Nature Communications</i> , 2014 , 5, 4914	17.4	101
239	A brief history of climate Ithe northern seas from the Last Glacial Maximum to global warming. <i>Quaternary Science Reviews</i> , 2014 , 106, 225-246	3.9	72

238	A diverse scientific life. <i>Journal of Paleolimnology</i> , 2014 , 51, 113-137	2.1	4
237	Revisiting tree-migration rates: Abies alba (Mill.), a case study. <i>Vegetation History and Archaeobotany</i> , 2014 , 23, 113-122	2.6	28
236	Rick Battarbee and his many contributions to palaeolimnology. <i>Journal of Paleolimnology</i> , 2013 , 49, 313	-332	2
235	Diatoms and pH reconstruction[[1990] revisited. <i>Journal of Paleolimnology</i> , 2013 , 49, 363-371	2.1	24
234	The Fagus sylvatica forests in the Larvik region, south-eastern Norway: their origin and history. <i>Vegetation History and Archaeobotany</i> , 2013 , 22, 215-229	2.6	11
233	Pollen-based palaeoclimate reconstructions over long glacialInterglacial timescales: methodological tests based on the Holocene and MIS 5dl deposits at Sokli, northern Finland. <i>Journal of Quaternary Science</i> , 2013 , 28, 271-282	2.3	23
232	Siberian larch forests and the ion content of thaw lakes form a geochemically functional entity. <i>Nature Communications</i> , 2013 , 4, 2408	17.4	26
231	Diatom flickering prior to regime shift. <i>Nature</i> , 2013 , 498, E11-2	50.4	26
230	Long-term vegetation stability in northern Europe as assessed by changes in species co-occurrences. <i>Plant Ecology and Diversity</i> , 2013 , 6, 289-302	2.2	10
229	The effect of calibration data set selection on quantitative palaeoclimatic reconstructions. <i>Holocene</i> , 2013 , 23, 1650-1654	2.6	16
228	Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. <i>Global Change Biology</i> , 2013 , 19, 1470-81	11.4	152
227	Soil mineral depletion drives early Holocene lake acidification. <i>Geology</i> , 2013 , 41, 415-418	5	15
226	Tree migration-rates: narrowing the gap between inferred post-glacial rates and projected rates. <i>PLoS ONE</i> , 2013 , 8, e71797	3.7	88
225	Biotic homogenization of upland vegetation: patterns and drivers at multiple spatial scales over five decades. <i>Journal of Vegetation Science</i> , 2012 , 23, 755-770	3.1	70
224	A new approach for reconstructing glacier variability based on lake sediments recording input from more than one glacier. <i>Quaternary Research</i> , 2012 , 77, 192-204	1.9	46
223	Testing intra-site transfer functions: an example using chironomids and water depth. <i>Journal of Paleolimnology</i> , 2012 , 48, 545-558	2.1	12
222	Are fossil assemblages in a single sediment core from a small lake representative of total deposition of mite, chironomid, and plant macrofossil remains?. <i>Journal of Paleolimnology</i> , 2012 , 48, 669	9 2 691	26
221	Temporally changing drivers for late-Holocene vegetation changes on the northern Tibetan Plateau. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2012 , 353-355, 10-20	2.9	7

220	Comment on "Glacial Survival of Boreal Trees in Northern Scandinavia". Science, 2012, 338, 742-742	33.3	39
219	From cold to cool in northernmost Norway: Lateglacial and early Holocene multi-proxy environmental and climate reconstructions from Jansvatnet, Hammerfest. <i>Quaternary Science Reviews</i> , 2012 , 33, 100-120	3.9	47
218	Macrofossils in Raraku Lake (Easter Island) integrated with sedimentary and geochemical records: towards a palaeoecological synthesis for the last 34,000 years. <i>Quaternary Science Reviews</i> , 2012 , 34, 113-126	3.9	27
217	High resolution Lateglacial and early-Holocene summer air temperature records from Scotland inferred from chironomid assemblages. <i>Quaternary Science Reviews</i> , 2012 , 41, 67-82	3.9	72
216	A North European pollendlimate calibration set: analysing the climatic responses of a biological proxy using novel regression tree methods. <i>Quaternary Science Reviews</i> , 2012 , 45, 95-110	3.9	36
215	The March Towards the Quantitative Analysis of Palaeolimnological Data. <i>Developments in Paleoenvironmental Research</i> , 2012 , 3-17		7
214	Overview of Numerical Methods in Palaeolimnology. <i>Developments in Paleoenvironmental Research</i> , 2012 , 19-92		24
213	Data-Sets. Developments in Paleoenvironmental Research, 2012 , 93-97		2
212	Introduction and Overview of Part II. Developments in Paleoenvironmental Research, 2012, 101-121		5
211	Clustering and Partitioning. Developments in Paleoenvironmental Research, 2012, 167-200		17
21 0	From Classical to Canonical Ordination. Developments in Paleoenvironmental Research, 2012, 201-248		88
209	Statistical Learning in Palaeolimnology. <i>Developments in Paleoenvironmental Research</i> , 2012 , 249-327		33
208	Introduction and Overview of Part III. Developments in Paleoenvironmental Research, 2012, 331-353		1
207	Analysis of Stratigraphical Data. <i>Developments in Paleoenvironmental Research</i> , 2012 , 355-378		20
206	Introduction and Overview of Part IV. Developments in Paleoenvironmental Research, 2012, 551-555		
205	Conclusions and Future Challenges. <i>Developments in Paleoenvironmental Research</i> , 2012 , 643-673		5
204	Quantitative Environmental Reconstructions from Biological Data. <i>Developments in Paleoenvironmental Research</i> , 2012 , 431-494		80
203	Fusing pollen-stratigraphic and dendroclimatic proxy data to reconstruct summer temperature variability during the past 7.5 ka in subarctic Fennoscandia. <i>Journal of Paleolimnology</i> , 2012 , 48, 275-286	5 ^{2.1}	27

202	A spatio-temporal reconstruction of Holocene temperature change in southern Scandinavia. <i>Holocene</i> , 2012 , 22, 165-177	2.6	25
201	Ecological palaeoecology and conservation biology: controversies, challenges, and compromises. <i>International Journal of Biodiversity Science, Ecosystem Services & Management</i> , 2012 , 8, 292-304		66
200	Inconsistent results should not be overlooked: A reply to Brooks et al. (2012). Holocene, 2012, 22, 1501-	1568	16
199	Comment on "Glacial survival of boreal trees in northern Scandinavia". <i>Science</i> , 2012 , 338, 742; author reply 742	33.3	19
198	Natural and cultural heritage in mountain landscapes: towards an integrated valuation. International Journal of Biodiversity Science, Ecosystem Services & Management, 2012, 8, 313-320		12
197	Chironomidae (Insecta: Diptera) succession in Bbieniec bog and its palaeo-lake (central Poland) through the Late Weichselian and Holocene. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2011 , 307, 150-167	2.9	54
196	The distribution and abundance of chironomids in high-latitude Eurasian lakes with respect to temperature and continentality: development and application of new chironomid-based climate-inference models in northern Russia. <i>Quaternary Science Reviews</i> , 2011 , 30, 1122-1141	3.9	72
195	A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. <i>Quaternary Science Reviews</i> , 2011 , 30, 1272-1278	3.9	149
194	Driving forces of mid-Holocene vegetation shifts on the upper Tibetan Plateau, with emphasis on changes in atmospheric CO2 concentrations. <i>Quaternary Science Reviews</i> , 2011 , 30, 1907-1917	3.9	38
193	Merging chironomid training sets: implications for palaeoclimate reconstructions. <i>Quaternary Science Reviews</i> , 2011 , 30, 2793-2804	3.9	12
192	The pace of Holocene vegetation change Lesting for synchronous developments. <i>Quaternary Science Reviews</i> , 2011 , 30, 2805-2814	3.9	76
191	QSR Correspondence Is spatial autocorrelation introducing biases in the apparent accuracy of palaeoclimatic reconstructions? Quaternary Science Reviews , 2011 , 30, 3210-3213	3.9	14
190	A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. <i>Quaternary Science Reviews</i> , 2011 , 30, 3445-3456	3.9	121
189	Strengths and Weaknesses of Quantitative Climate Reconstructions Based on Late-Quaternary Biological Proxies. <i>Open Ecology Journal</i> , 2011 , 3, 68-110	2	253
188	Orchid species richness along Himalayan elevational gradients. <i>Journal of Biogeography</i> , 2011 , 38, 1821	-14813	83
187	Invasion of Norway spruce diversifies the fire regime in boreal European forests. <i>Journal of Ecology</i> , 2011 , 99, no-no	6	9
186	Fine-scale changes in vegetation composition in a boreal mire over 50 years. <i>Journal of Ecology</i> , 2011 , 99, 1179-1189	6	49
185	Quantification of UV-B flux through time using UV-B-absorbing compounds contained in fossil Pinus sporopollenin. <i>New Phytologist</i> , 2011 , 192, 553-60	9.8	36

184	Effect of uneven sampling along an environmental gradient on transfer-function performance. <i>Journal of Paleolimnology</i> , 2011 , 46, 99-106	2.1	67
183	Developing a modern pollentlimate calibration data set for Norway. <i>Boreas</i> , 2010 , 39, 674-688	2.4	28
182	Late-Quaternary palaeoclimatic research in Fennoscandia 🖟 historical review. <i>Boreas</i> , 2010 , 39, 655-673	2.4	29
181	Early Weichselian (MIS 5d and 5c) temperatures and environmental changes in northern Fennoscandia as recorded by chironomids and macroremains at Sokli, northeast Finland. <i>Boreas</i> , 2010 , 39, 689-704	2.4	27
180	Current continental palaeoclimatic research in the Nordic region (100 years since Gunnar Andersson 1909) Introduction. <i>Boreas</i> , 2010 , 39, 649-654	2.4	6
179	A modern pollentilimate calibration set based on lake sediments from the Tibetan Plateau and its application to a Late Quaternary pollen record from the Qilian Mountains. <i>Journal of Biogeography</i> , 2010 , 37, 752-766	4.1	114
178	THIS ARTICLE HAS BEEN RETRACTED: What caused the mid-Holocene forest decline on the eastern Tibet-Qinghai Plateau?. <i>Global Ecology and Biogeography</i> , 2010 , 19, 278-286	6.1	29
177	Recent vegetation changes at the high-latitude tree line ecotone are controlled by geomorphological disturbance, productivity and diversity. <i>Global Ecology and Biogeography</i> , 2010 , 19, 810-821	6.1	101
176	Holocene land-cover reconstructions for studies on land cover-climate feedbacks. <i>Climate of the Past</i> , 2010 , 6, 483-499	3.9	164
175	Holocene land-cover changes on the Tibetan Plateau. <i>Holocene</i> , 2010 , 20, 91-104	2.6	48
174	4 °C and beyond: what did this mean for biodiversity in the past?. Systematics and Biodiversity, 2010 , 8, 3-9	1.7	45
173	Quantifying recent ecological changes in remote lakes of North America and Greenland using sediment diatom assemblages. <i>PLoS ONE</i> , 2010 , 5, e10026	3.7	83
172	Alpine vegetation and species-richness patterns along two altitudinal gradients in the Gyama Valley, south-central Tibet, China. <i>Plant Ecology and Diversity</i> , 2010 , 3, 235-247	2.2	8
171	Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. <i>Trends in Ecology and Evolution</i> , 2010 , 25, 583-91	10.9	242
170	Regional consistency in Lateglacial chironomid-inferred temperatures from five sites in north-west England. <i>Quaternary Science Reviews</i> , 2010 , 29, 1528-1538	3.9	49
169	Reconciling pollen-stratigraphical and tree-ring evidence for high- and low-frequency temperature variability in the past millennium. <i>Quaternary Science Reviews</i> , 2010 , 29, 3905-3918	3.9	12
168	How important is plot relocation accuracy when interpreting re-visitation studies of vegetation change?. <i>Plant Ecology and Diversity</i> , 2010 , 3, 1-8	2.2	60
167	Oribatid mite assemblages across the tree-line in western Norway and their representation in lake sediments. <i>Journal of Paleolimnology</i> , 2010 , 44, 361-374	2.1	9

(2008-2010)

166	Holocene climate and environmental history of Brurskardstjini, a lake in the catchment of Ilre Heimdalsvatn, south-central Norway. <i>Hydrobiologia</i> , 2010 , 642, 13-34	2.4	20
165	Evaluating the indicator value of Tibetan pollen taxa for modern vegetation and climate. <i>Review of Palaeobotany and Palynology</i> , 2010 , 160, 197-208	1.7	38
164	Chironomid-inferred late-glacial summer air temperatures from Lough Nadourcan, Co. Donegal, Ireland. <i>Journal of Quaternary Science</i> , 2010 , 25, 1200-1210	2.3	45
163	Holocene climate and environmental history of Brurskardstj E ni, a lake in the catchment of U re Heimdalsvatn, south-central Norway 2010 , 13-34		
162	Last nine-thousand years of temperature variability in Northern Europe. <i>Climate of the Past</i> , 2009 , 5, 523-535	3.9	202
161	Svend Th. Andersen (19262009). Review of Palaeobotany and Palynology, 2009, 157, 189-191	1.7	2
160	Quantitative summer-temperature reconstructions for the last 2000 years based on pollen-stratigraphical data from northern Fennoscandia. <i>Journal of Paleolimnology</i> , 2009 , 41, 43-56	2.1	44
159	Variability in thermal and UV-B energy fluxes through time and their influence on plant diversity and speciation. <i>Journal of Biogeography</i> , 2009 , 36, 1630-1644	4.1	36
158	Flora, vegetation and climate at Sokli, northeastern Fennoscandia, during the Weichselian Middle Pleniglacial. <i>Boreas</i> , 2009 , 38, 335-348	2.4	27
157	Evaluation of transfer functions in spatially structured environments. <i>Quaternary Science Reviews</i> , 2009 , 28, 1309-1316	3.9	169
156	The development and local stand-scale dynamics of a Picea abies forest in southeastern Norway. <i>Holocene</i> , 2009 , 19, 1073-1082	2.6	24
155	Recent warming reverses long-term arctic cooling. <i>Science</i> , 2009 , 325, 1236-9	33.3	515
154	A multi-proxy palaeoecological study of Alanen Laanijīvi, a boreal-forest lake in Swedish Lapland. <i>Boreas</i> , 2008 , 34, 192-206	2.4	2
153	Holocene vegetation dynamics and inferred climate changes at SvanNatnet, Mo i Rana, northern Norway. <i>Boreas</i> , 2008 , 37, 146-156	2.4	40
152	Late-Quaternary summer temperature changes in the northern-European tree-line region. <i>Quaternary Research</i> , 2008 , 69, 404-412	1.9	34
151	Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. <i>Quaternary Science Reviews</i> , 2008 , 27, 351-364	3.9	757
150	Exploring Holocene continentality changes in Fennoscandia using present and past tree distributions. <i>Quaternary Science Reviews</i> , 2008 , 27, 1296-1308	3.9	56
149	Agroforestry: a refuge for tropical biodiversity?. <i>Trends in Ecology and Evolution</i> , 2008 , 23, 261-7	10.9	435

148	Recent ecological change in a remote Scottish mountain loch: An evaluation of a Cladocera-based temperature transfer-function. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2008 , 259, 51-76	2.9	35
147	Holocene pollen stratigraphy of southern Sweden: a reappraisal using numerical methods. <i>Boreas</i> , 2008 , 8, 257-279	2.4	36
146	Composition and formation of laminated sediments in Diss Mere, Norfolk, England. <i>Boreas</i> , 2008 , 13, 13-28	2.4	35
145	Alpines, trees, and refugia in Europe. <i>Plant Ecology and Diversity</i> , 2008 , 1, 147-160	2.2	251
144	Biological responses to rapid climate change at the Younger DryasHolocene transition at Krkenes, western Norway. <i>Holocene</i> , 2008 , 18, 19-30	2.6	124
143	A multiproxy palaeolimnological investigation of Holocene environmental change, between c. 10 700 and 7200 years BP, at Holebudalen, southern Norway. <i>Holocene</i> , 2008 , 18, 805-817	2.6	25
142	Frank Oldfield and his contributions to environmental change research. <i>Holocene</i> , 2008 , 18, 3-17	2.6	1
141	Spatial structure of the 8200 cal yr BP event in northern Europe. Climate of the Past, 2007, 3, 225-236	3.9	61
140	A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. <i>Journal of Biogeography</i> , 2007 , 34, 1907-1915	4.1	133
139	Are cladoceran fossils in lake sediment samples a biased reflection of the communities from which they are derived?. <i>Journal of Paleolimnology</i> , 2007 , 38, 157-181	2.1	53
138	Present-day temperatures in northern Scandinavia during the last glaciation. <i>Geology</i> , 2007 , 35, 987	5	66
137	Quantitative palaeotemperature records inferred from fossil pollen and chironomid assemblages from Lake GilltjEnen, northern central Sweden. <i>Journal of Quaternary Science</i> , 2006 , 21, 831-841	2.3	61
136	Holocene palaeoclimate reconstructions at Vanndalsvatnet, western Norway, with particular reference to the 8200 cal. yr BP event. <i>Holocene</i> , 2006 , 16, 717-729	2.6	44
135	What is natural? The need for a long-term perspective in biodiversity conservation. <i>Science</i> , 2006 , 314, 1261-5	33.3	447
134	Dispersal limitations matter for microbial morphospecies. <i>Science</i> , 2006 , 312, 1015	33.3	164
133	How many freshwater diatoms are pH specialists? A response to Pither & Aarssen (2005). <i>Ecology Letters</i> , 2006 , 9, E1-5; discussion E6-12	10	19
132	On the presence of late-glacial trees in western Norway and the Scandes: a further comment. Journal of Biogeography, 2006 , 33, 376-377	4.1	10
131	Aquatic Biota and the Detection of Climate Change: Are there Consistent Aquatic Ecotones?. Journal of Paleolimnology, 2006 , 35, 507-518	2.1	54

(2004-2006)

130	Holocene forest development along the Setesdal valley, southern Norway, reconstructed from macrofossil and pollen evidence. <i>Vegetation History and Archaeobotany</i> , 2006 , 15, 65-85	2.6	71
129	Multi-proxy studies in palaeolimnology. Vegetation History and Archaeobotany, 2006, 15, 235-251	2.6	239
128	Estimating the amount of compositional change in late-Quaternary pollen-stratigraphical data. <i>Vegetation History and Archaeobotany</i> , 2006 , 16, 197-202	2.6	78
127	A multi-proxy study of lake-development in response to catchment changes during the Holocene at Lochnagar, north-east Scotland. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2005 , 221, 175-20	1 ^{2.9}	57
126	Mind the gap: how open were European primeval forests?. <i>Trends in Ecology and Evolution</i> , 2005 , 20, 154-6	10.9	95
125	Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia. <i>Quaternary Science Reviews</i> , 2005 , 24, 1429-1462	3.9	155
124	The secret assumption of transfer functions: problems with spatial autocorrelation in evaluating model performance. <i>Quaternary Science Reviews</i> , 2005 , 24, 2173-2179	3.9	200
123	Holocene Climate Variability in the Northern North Atlantic Region: A Review of Terrestrial and Marine Evidence. <i>Geophysical Monograph Series</i> , 2005 , 289-322	1.1	13
122	Did tree-Betula, Pinus and Picea survive the last glaciation along the west coast of Norway? A review of the evidence, in light of Kullman (2002). <i>Journal of Biogeography</i> , 2005 , 32, 1461-1471	4.1	43
121	Holocene environmental history and climate of REGEN, a low-alpine lake in south-central Norway. <i>Journal of Paleolimnology</i> , 2005 , 33, 129-153	2.1	67
120	Palaeolimnological evidence for recent climatic change in lakes from the northern Urals, arctic Russia. <i>Journal of Paleolimnology</i> , 2005 , 33, 463-482	2.1	71
119	Fifty years of Quaternary pollen analysis in Fennoscandia 1954\(\textit{\pi}\)004. Grana, 2005 , 44, 1-22	0.8	34
118	Climate-driven regime shifts in the biological communities of arctic lakes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 4397-402	11.5	699
117	Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. <i>Holocene</i> , 2005 , 15, 612-618	2.6	251
116	A multi-proxy palaeoecological study of Alanen Laanijfivi, a boreal-forest lake in Swedish Lapland. <i>Boreas</i> , 2005 , 34, 192-206	2.4	14
115	Holocene mean July temperature and winter precipitation in western Norvay inferred from palynological and glaciological lake-sediment proxies. <i>Holocene</i> , 2005 , 15, 177-189	2.6	112
114	The intercept is a poor estimate of a calibrated radiocarbon age. <i>Holocene</i> , 2004 , 14, 296-298	2.6	297
113	Paleoecology. The rise and fall of forests. <i>Science</i> , 2004 , 305, 484-5	33.3	77

112	A modern pollentlimate calibration set from northern Europe: developing and testing a tool for palaeoclimatological reconstructions. <i>Journal of Biogeography</i> , 2004 , 31, 251-267	4.1	150
111	Long-Term Effects of Reclamation Treatments on Plant Succession in Iceland. <i>Restoration Ecology</i> , 2004 , 12, 268-278	3.1	44
110	Benthonic foraminiferal distributions and quantitative transfer functions for the northwest European continental margin. <i>Marine Micropaleontology</i> , 2004 , 53, 197-226	1.7	72
109	Recent Environmental Change and Atmospheric Contamination on Svalbard as Recorded in Lake Sediments (an Introduction. <i>Journal of Paleolimnology</i> , 2004 , 31, 403-410	2.1	36
108	Recent Environmental Change and Atmospheric Contamination on Svalbard as Recorded in Lake Sediments [Modern Limnology, Vegetation, and Pollen Deposition. <i>Journal of Paleolimnology</i> , 2004 , 31, 411-431	2.1	22
107	Lake-Sediment Records of Recent Environmental Change on Svalbard: Results of Diatom Analysis. <i>Journal of Paleolimnology</i> , 2004 , 31, 445-466	2.1	69
106	The Dynamics of Chironomidae (Insecta: Diptera) Assemblages in Response to Environmental Change during the past 700 years on Svalbard. <i>Journal of Paleolimnology</i> , 2004 , 31, 483-498	2.1	68
105	Recent Environmental Change and Human Impact on Svalbard: The Lake-Sediment Geochemical Record. <i>Journal of Paleolimnology</i> , 2004 , 31, 515-530	2.1	77
104	Recent Environmental Change and Atmospheric Contamination on Svalbard as Recorded in Lake Sediments Bynthesis and General Conclusions. <i>Journal of Paleolimnology</i> , 2004 , 31, 531-546	2.1	45
103	All agedepth models are wrong: but how badly?. Quaternary Science Reviews, 2004, 23, 1-5	3.9	252
102	Holocene vegetation and climate history on a continental-oceanic transect in northern Fennoscandia based on pollen and plant macrofossils. <i>Boreas</i> , 2004 , 33, 211-223	2.4	94
101	Holocene sediments of Sgistalsee, a small lake at the present-day tree-line in the Swiss Alps. <i>Journal of Paleolimnology</i> , 2003 , 30, 253-260	2.1	22
100	The Holocene palaeolimnology of Sgistalsee and its environmental history (a synthesis. <i>Journal of Paleolimnology</i> , 2003 , 30, 333-342	2.1	82
	1 accountiology, 2003, 30, 333 342		
99	Separating wheat from chaff: Diatom taxon selection using an artificial neural network pruning algorithm. <i>Journal of Paleolimnology</i> , 2003 , 29, 123-133	2.1	28
99 98	Separating wheat from chaff: Diatom taxon selection usingan artificial neural network pruning	2.1	28
	Separating wheat from chaff: Diatom taxon selection using an artificial neural network pruning algorithm. <i>Journal of Paleolimnology</i> , 2003 , 29, 123-133 Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain		
98	Separating wheat from chaff: Diatom taxon selection using an artificial neural network pruning algorithm. <i>Journal of Paleolimnology</i> , 2003 , 29, 123-133 Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. <i>Holocene</i> , 2003 , 13, 1-6 Effects of within-lake variability of fossil assemblages on quantitative chironomid-inferred	2.6	263

(2000-2002)

94	Partitioning floristic variance in Norwegian upland grasslands into within-site and between-site components: are the patterns determined by environment or by land-use?. <i>Plant Ecology</i> , 2002 , 162, 233-245	1.7	50
93	Climate variability and ecosystem dynamics of remote alpine and arctic lakes: the MOLAR project. <i>Journal of Paleolimnology</i> , 2002 , 28, 1-6	2.1	90
92	Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. <i>Journal of Paleolimnology</i> , 2002 , 28, 161-179	2.1	138
91	Rapid climatic changes during the Greenland stadial 1 (Younger Dryas) to early Holocene transition on the Norwegian Barents Sea coast. <i>Boreas</i> , 2002 , 31, 215-225	2.4	4
90	Holocene changes in atmospheric circulation recorded in the oxygen-isotope stratigraphy of lacustrine carbonates from northern Sweden. <i>Holocene</i> , 2002 , 12, 339-351	2.6	158
89	The environmental impact of the Minoan eruption of Santorini (Thera): statistical analysis of palaeoecological data from Golbisar, southwest Turkey. <i>Holocene</i> , 2002 , 12, 431-444	2.6	48
88	Quantitative multiproxy assessment of long-term patterns of Holocene environmental change from a small lake near Abisko, northern Sweden. <i>Holocene</i> , 2002 , 12, 481-496	2.6	182
87	Pattern and process in Norwegian upland grasslands: a functional analysis 2002 , 13, 123		3
86	The identification of wingless Betula fruits in Weichselian sediments in the Gross Todtshorn borehole (Lower Saxony, Germany) [the occurrence of Betula humilis Schrank <i>Vegetation History and Archaeobotany</i> , 2001 , 10, 107-115	2.6	8
85	Tracing lake trophic history with a chironomidEotal phosphorus inference model. <i>Freshwater Biology</i> , 2001 , 46, 513-533	3.1	145
84	Quantitative models for reconstructing catchment ice-extent using physical-chemical characteristics of lake sediments. <i>Journal of Paleolimnology</i> , 2001 , 25, 375-392	2.1	16
83	Maximum likelihood environmental calibration and the compute program WACALIB a correction. <i>Journal of Paleolimnology</i> , 2001 , 25, 111-115	2.1	8
82	July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions. <i>Holocene</i> , 2001 , 11, 527-539	2.6	299
81	Holocene climatic change reconstructed from diatoms, chironomids, pollen and near-infrared spectroscopy at an alpine lake (Sjuodjijaure) in northern Sweden. <i>Holocene</i> , 2001 , 11, 551-562	2.6	142
80	Establishing a terrestrial chronological framework as a basis for biostratigraphical comparisons. <i>Quaternary Science Reviews</i> , 2001 , 20, 1583-1592	3.9	128
79	Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. <i>Quaternary Science Reviews</i> , 2001 , 20, 1723-1741	3.9	313
78	Diatom responses to late-glacial and early-Holocene environmental changes at Krkenes, western Norway. <i>Journal of Paleolimnology</i> , 2000 , 23, 21-34	2.1	57
77	Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Krkenes Lake, western Norway. <i>Journal of Paleolimnology</i> , 2000 , 23, 77-89	2.1	162

76	The development of the aquatic ecosystem at Krkenes Lake, western Norway, during the late glacial and early Holocene - a synthesis. <i>Journal of Paleolimnology</i> , 2000 , 23, 91-114	2.1	211
75	Quantification of biotic responses to rapid climatic changes around the Younger Dryas lassynthesis. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2000 , 159, 313-347	2.9	186
74	Younger Dryas and Allerd summer temperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran assemblages. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2000 , 159, 345	9 -3 81	183
73	An expanded calibration model for inferring lakewater and air temperatures from fossil chironomid assemblages in northern Fennoscandia. <i>Holocene</i> , 1999 , 9, 279-294	2.6	167
72	The altitudinal gradient of vascular plant richness in Aurland, western Norway. <i>Ecography</i> , 1999 , 22, 548	8 -5 . 6 6	101
71	Predicting Heavy Metal Concentrations in the Surface Sediments of Norwegian Headwater Lakes from Atmospheric Deposition: An Application of a Simple Sediment-Water Partitioning Model. <i>Water, Air, and Soil Pollution</i> , 1999 , 114, 27-51	2.6	18
70	Frode Berge (1938-1997). <i>Journal of Paleolimnology</i> , 1999 , 21, 259-261	2.1	
69	Surface-sediment and epilithic diatom pH calibration sets for remote European mountain lakes (AL:PE Project) and their comparison with the Surface Waters Acidification Programme (SWAP) calibration set. <i>Journal of Paleolimnology</i> , 1999 , 22, 291-317	2.1	88
68	Plant species richness in Fennoscandia: evaluating the relative importance of climate and history. <i>Nordic Journal of Botany</i> , 1999 , 19, 489-503	1.1	47
67	Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. <i>Journal of Paleolimnology</i> , 1998 , 19, 443-463	2.1	184
66	D.G. Frey and E.S. Deevey Review 1: Numerical tools in palaeolimnology (Progress, potentialities, and problems. <i>Journal of Paleolimnology</i> , 1998 , 20, 307-332	2.1	669
65	A numerical analysis of the mesoscale distribution patterns of vascular plants in the subarctic Kevo Nature Reserve, northern Finland. <i>Journal of Biogeography</i> , 1998 , 25, 123-146	4.1	23
64	Predicting changes in Fennoscandian vascular-plant species richness as a result of future climatic change. <i>Journal of Biogeography</i> , 1998 , 25, 111-112	4.1	57
63	The Phytogeography of Northern Europe: British Isles, Fennoscandia, and Adjacent Areas 1998,		118
62	Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. <i>Journal of Paleolimnology</i> , 1997 , 18, 395-420	2.1	338
61	A comparative ecological study of Norwegian mountain plants in relation to possible future climatic change. <i>Journal of Biogeography</i> , 1997 , 24, 127-152	4.1	70
60	Contributions of Quaternary palaeoecology to nature conservation. <i>Journal of Vegetation Science</i> , 1996 , 7, 89-98	3.1	106
59	Numerical analysis of modern and fossil pollen spectra as a tool for elucidating the nature of fine-scale human activities in boreal areas. <i>Vegetation History and Archaeobotany</i> , 1996 , 5, 257	2.6	53

58	Diatom-based water chemistry reconstructions from northern Sweden: a comparison of reconstruction techniques. <i>Journal of Paleolimnology</i> , 1996 , 15, 65	2.1	46
57	The Krkenes late-glacial palaeoenvironmental project. <i>Journal of Paleolimnology</i> , 1996 , 15, 281-286	2.1	22
56	Statistical approaches to interpreting diversity patterns in the Norwegian mountain flora. <i>Ecography</i> , 1996 , 19, 332-340	6.5	63
55	Spatial and environmental components of variation in the distribution patterns of subarctic plant species at Kevo, N Finland - a case study at the meso-scale level. <i>Ecography</i> , 1996 , 19, 341-351	6.5	35
54	Assessment of freshwater diatoms as quantitative indicators of past climatic change in the Yukon and Northwest Territories, Canada. <i>Journal of Paleolimnology</i> , 1995 , 13, 21-49	2.1	167
53	Late-glacial pollen and diatom changes in response to two different environmental perturbations: volcanic eruption and Younger Dryas cooling. <i>Journal of Paleolimnology</i> , 1995 , 14, 23-47	2.1	71
52	Al:Pe projects: Water chemistry and critical loads. Water, Air, and Soil Pollution, 1995, 85, 493-498	2.6	9
51	Long-term chemical and biological trends in Scottish streams and lochs. <i>Water, Air, and Soil Pollution</i> , 1995 , 85, 701-706	2.6	14
50	Briksdalsbreen, western Norway: climatic effects on the terminal response of a temperate glacier between AD 1901 and 1994. <i>Holocene</i> , 1995 , 5, 343-347	2.6	39
49	When Did Acid-Sensitive Adirondack Lakes (New York, USA) Begin to Acidify and Are They Still Acidifying?. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1994 , 51, 1550-1568	2.4	65
48	Application of modern pollen/land-use relationships to the interpretation of pollen diagramsteconstructions of land-use history in south Sweden, 3000-0 BP. <i>Review of Palaeobotany and Palynology</i> , 1994 , 82, 47-73	1.7	120
47	Recurrent groups of pollen types in time. Review of Palaeobotany and Palynology, 1994, 82, 165-173	1.7	17
46	The importance of pollen and diatom taxonomic precision in quantitative palaeoenvironmental reconstructions. <i>Review of Palaeobotany and Palynology</i> , 1994 , 83, 107-117	1.7	60
45	Did Icelandic volcanic eruptions influence the post-glacial vegetational history of the British Isles?. <i>Trends in Ecology and Evolution</i> , 1994 , 9, 312-4	10.9	22
44	Responses of Diatom and Chrysophyte Assemblages in Lake 227 Sediments to Experimental Eutrophication. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1994 , 51, 2300-2311	2.4	60
43	Patterns of variation in late-glacial pollen stratigraphy along a northwest-southeast transect through Switzerland numerical analysis. <i>Quaternary Science Reviews</i> , 1993 , 12, 277-286	3.9	34
42	Quaternary palaeoecology and vegetation sciencel turrent contributions and possible future developments. <i>Review of Palaeobotany and Palynology</i> , 1993 , 79, 153-177	1.7	72
41	A New Biogeographical Classification of the Scottish Uplands. II. VegetationEnvironment Relationships. <i>Journal of Ecology</i> , 1993 , 81, 231	6	30

40	Quantitative studies on saxicolous bryophyte Lenvironment relationships in western Norway. <i>Journal of Bryology</i> , 1993 , 17, 579-611	1.1	15
39	The impact of the Laacher See Tephra on terrestrial and aquatic ecosystems in the Black Forest, southern germany. <i>Journal of Quaternary Science</i> , 1993 , 8, 263-276	2.3	85
38	Prehistoric increases in the pH of acid-sensitive Swedish lakes caused by land-use changes. <i>Nature</i> , 1993 , 362, 824-827	50.4	114
37	The ecology and conservation of the Killarney Fern Trichomanes speciosum willd. In Britain and Ireland. <i>Biological Conservation</i> , 1993 , 66, 231-247	6.2	20
36	How to maximize biological diversity in nature reserve selection: Vascular plants and breeding birds in deciduous woodlands, western Norway. <i>Biological Conservation</i> , 1993 , 66, 131-138	6.2	155
35	Assessing the representativeness of nature reserves using multivariate analysis: Vascular plants and breeding birds in deciduous forests, western Norway. <i>Biological Conservation</i> , 1993 , 65, 121-132	6.2	39
34	Assessing Trends in Fishery Resources and Lake Water Aluminum from Paleolimnological Analyses of Siliceous Algae. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1992 , 49, 116-127	2.4	71
33	How Much Acidification Has Occurred in Adirondack Region Lakes (New York, USA) since Preindustrial Times?. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1992 , 49, 128-141	2.4	154
32	SCALED CHRYSOPHYTES (CHRYSOPHYCEAE AND SYNUROPHYCEAE) FROM ADIRONDACK DRAINAGE LAKES AND THEIR RELATIONSHIP TO ENVIRONMENTAL VARIABLES1. <i>Journal of Phycology</i> , 1992 , 28, 162-178	3	66
31	The relationship between sedimentary chrysophyte scales (Chrysophyceae and Synurophyceae) and limnological characteristics in 25 Norwegian lakes. <i>Nordic Journal of Botany</i> , 1991 , 11, 231-242	1.1	29
30	An Assessment of Chironomidae as Quantitative Indicators of Past Climatic Change. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1991 , 48, 975-987	2.4	276
29	Quantitative vegetation-environment relationships in west norwegian tall-fern vegetation. <i>Nordic Journal of Botany</i> , 1990 , 10, 511-533	1.1	24
28	Postglacial history of alder (Alnus glutinosa (L.) Gaertn.) in the British Isles. <i>Journal of Quaternary Science</i> , 1990 , 5, 123-133	2.3	92
27	Holocene Isochrone Maps and Patterns of Tree-Spreading in the British Isles. <i>Journal of Biogeography</i> , 1989 , 16, 503	4.1	238
26	Recent and possible future mathematical developments in quantitative palaeoecology. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 1985 , 50, 107-147	2.9	41
25	MID-FLANDRIAN FOREST HISTORY OF ROUDSEA WOOD NATIONAL NATURE RESERVE, CUMBRIA. <i>New Phytologist</i> , 1982 , 90, 339-354	9.8	25
24	Late Wisconsin Vegetational and Climatic History at Kylen Lake, Northeastern Minnesota1. <i>Quaternary Research</i> , 1981 , 16, 322-355	1.9	58
23	The Present Flora and Vegetation of the Moraines of the Klutlan Glacier, Yukon Territory, Canada: A Study in Plant Succession?. <i>Quaternary Research</i> , 1980 , 14, 60-86	1.9	88

22	Soil Development on Recent End Moraines of the Klutlan Glacier, Yukon Territory, Canada?. <i>Quaternary Research</i> , 1980 , 14, 87-100	1.9	52
21	Modern Pollen Assemblages and Vegetational History of the Moraines of the Klutlan Glacier and Its Surroundings, Yukon Territory, Canada?. <i>Quaternary Research</i> , 1980 , 14, 101-129	1.9	64
20	Identification of Picea pollen of Late Quaternary age in eastern North America: a numerical approach. <i>Canadian Journal of Botany</i> , 1980 , 58, 2043-2058		45
19	British Trees and Insects: A Test of the Time Hypothesis Over the Last 13,000 Years. <i>American Naturalist</i> , 1980 , 115, 600-605	3.7	26
18	INTERGLACIAL POLLEN SPECTRA FROM SEL AYRE, SHETLAND. New Phytologist, 1979, 83, 559-575	9.8	34
17	Modern pollen rain and vegetation of the St. Elias Mountains, Yukon Territory. <i>Canadian Journal of Botany</i> , 1977 , 55, 2367-2382		46
16	PLANT COMMUNITIES OF THE ISLAND OF ARRAN, SCOTLAND. New Phytologist, 1977 , 79, 689-712	9.8	18
15	THE DISTRIBUTION OF EUROPEAN PTERIDOPHYTES: A NUMERICAL ANALYSIS. <i>New Phytologist</i> , 1976 , 77, 257-287	9.8	52
14	Late-Wisconsinan Vegetational History at Wolf Creek, Central Minnesota. <i>Ecological Monographs</i> , 1976 , 46, 395-429	9	164
13	Numerical analysis of pollen samples from central Canada: A comparison of methods. <i>Review of Palaeobotany and Palynology</i> , 1975 , 20, 133-169	1.7	63
12	Studies on the bryophyte flora and vegetation of the Isle of Skye. I. Flora. <i>Journal of Bryology</i> , 1974 , 8, 197-254	1.1	13
11	NUMERICAL ZONATIONS OF FLANDRIAN POLLEN DATA. New Phytologist, 1974 , 73, 351-358	9.8	33
10	A NUMERICAL ANALYSIS OF THE PAST AND PRESENT FLORA OF THE BRITISH ISLES. <i>New Phytologist</i> , 1973 , 72, 877-902	9.8	14
9	NUMERICAL METHODS IN QUATERNARY PALAEOECOLOGY I. ZONATION OF POLLEN DIAGRAMS. <i>New Phytologist</i> , 1972 , 71, 961-979	9.8	179
8	A Dote on the habitat of Scorpidium turgescens (T. Jens.) Loeske in Scotland. <i>Transactions of the British Bryological Society</i> , 1970 , 6, 129-132		3
7	INWASHED POLLEN SPECTRA AT LOCH FADA, ISLE OF SKYE. <i>New Phytologist</i> , 1970 , 69, 807-820	9.8	52
6	AN INTERGLACIAL PEAT AT FUGLA NESS, SHETLAND. New Phytologist, 1969 , 68, 777-796	9.8	49
5	THE IDENTIFICATION OF BETULA NANA POLLEN. <i>New Phytologist</i> , 1968 , 67, 309-314	9.8	111

4	LATE-GLACIAL DEPOSITS AT BAGMERE, CHESHIRE, AND CHAT MOSS, LANCASHIRE. <i>New Phytologist</i> , 1965 , 64, 270-281	9.8	21
3	The Diatoms: Applications for the Environmental and Earth Sciences23-54		40
2	Holocene Climate Research (Progress, Paradigms, and Problems7-57		13
1	Rate-of-change analysis in palaeoecology revisited: a new approach		2