
Sreedhar Gundekari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5215415/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective preparation of renewable ketals from biomass-based carbonyl compounds with polyols using β-zeolite catalyst. Molecular Catalysis, 2022, 524, 112269.	2.0	6
2	Preparation of cyclohexanol from lignin-based phenolic concoction using controlled hydrogen delivery tool over in-situ Ru catalyst. Biomass and Bioenergy, 2022, 161, 106448.	5.7	10
3	Selective Synthesis of Cyclohexanol Intermediates from Lignin-Based Phenolics and Diaryl Ethers using Hydrogen over Supported Metal Catalysts: A Critical Review. Catalysis Surveys From Asia, 2021, 25, 1-26.	2.6	11
4	Levulinic Acid- and Furan-Based Multifunctional Materials: Opportunities and Challenges. , 2021, , 291-343.		0
5	Catalytic approaches for the selective preparation of cyclohexanone from lignin-based methoxyphenols/phenols. , 2021, , 301-327.		0
6	Preparation of cyclohexanol intermediates from lignin through catalytic intervention. , 2021, , 57-82.		0
7	Recent Catalytic Approaches for the Production of Cycloalkane Intermediates from Ligninâ€Based Aromatic Compounds: A Review. ChemistrySelect, 2021, 6, 1715-1733.	1.5	8
8	Classification, characterization, and properties of edible and non-edible biomass feedstocks. , 2020, , 89-120.		5
9	In situ Generated Ru(0)-HRO@Na-β From Hydrous Ruthenium Oxide (HRO)/Na-β: An Energy-Efficient Catalyst for Selective Hydrogenation of Sugars. Frontiers in Chemistry, 2020, 8, 525277.	3.6	1
10	Chemo†and Regioselective Synthesis of Arylated γâ€Valerolactones from Bioâ€based Levulinic Acid with Aromatics Using Hâ€Î² Zeolite Catalyst. ChemCatChem, 2019, 11, 1102-1111.	3.7	10
11	Hydrous ruthenium oxide: A new generation remarkable catalyst precursor for energy efficient and sustainable production of γ-valerolactone from levulinic acid in aqueous medium. Applied Catalysis A: General, 2019, 569, 117-125.	4.3	30
12	Screening of Solvents, Hydrogen Source, and Investigation of Reaction Mechanism for the Hydrocyclisation of Levulinic Acid to γ-Valerolactone Using Ni/SiO2–Al2O3 Catalyst. Catalysis Letters, 2019, 149, 215-227.	2.6	25
13	In situ generated Ni(0)@boehmite from NiAl-LDH: An efficient catalyst for selective hydrogenation of biomass derived levulinic acid to γ-valerolactone. Catalysis Communications, 2017, 102, 40-43.	3.3	46