Sreedhar Gundekari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5215415/publications.pdf

Version: 2024-02-01

1306789 1473754 13 152 7 9 citations g-index h-index papers 14 14 14 150 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	In situ generated Ni(0)@boehmite from NiAl-LDH: An efficient catalyst for selective hydrogenation of biomass derived levulinic acid to γ-valerolactone. Catalysis Communications, 2017, 102, 40-43.	1.6	46
2	Hydrous ruthenium oxide: A new generation remarkable catalyst precursor for energy efficient and sustainable production of \hat{l}^3 -valerolactone from levulinic acid in aqueous medium. Applied Catalysis A: General, 2019, 569, 117-125.	2.2	30
3	Screening of Solvents, Hydrogen Source, and Investigation of Reaction Mechanism for the Hydrocyclisation of Levulinic Acid to γ-Valerolactone Using Ni/SiO2–Al2O3 Catalyst. Catalysis Letters, 2019, 149, 215-227.	1.4	25
4	Selective Synthesis of Cyclohexanol Intermediates from Lignin-Based Phenolics and Diaryl Ethers using Hydrogen over Supported Metal Catalysts: A Critical Review. Catalysis Surveys From Asia, 2021, 25, 1-26.	1.0	11
5	Chemo†and Regioselective Synthesis of Arylated γâ€Valerolactones from Bioâ€based Levulinic Acid with Aromatics Using Hâ€Î² Zeolite Catalyst. ChemCatChem, 2019, 11, 1102-1111.	1.8	10
6	Preparation of cyclohexanol from lignin-based phenolic concoction using controlled hydrogen delivery tool over in-situ Ru catalyst. Biomass and Bioenergy, 2022, 161, 106448.	2.9	10
7	Recent Catalytic Approaches for the Production of Cycloalkane Intermediates from Ligninâ€Based Aromatic Compounds: A Review. ChemistrySelect, 2021, 6, 1715-1733.	0.7	8
8	Selective preparation of renewable ketals from biomass-based carbonyl compounds with polyols using \hat{l}^2 -zeolite catalyst. Molecular Catalysis, 2022, 524, 112269.	1.0	6
9	Classification, characterization, and properties of edible and non-edible biomass feedstocks., 2020,, 89-120.		5
10	In situ Generated Ru(0)-HRO@Na- \hat{l}^2 From Hydrous Ruthenium Oxide (HRO)/Na- \hat{l}^2 : An Energy-Efficient Catalyst for Selective Hydrogenation of Sugars. Frontiers in Chemistry, 2020, 8, 525277.	1.8	1
11	Levulinic Acid- and Furan-Based Multifunctional Materials: Opportunities and Challenges. , 2021, , 291-343.		0
12	Catalytic approaches for the selective preparation of cyclohexanone from lignin-based methoxyphenols/phenols., 2021,, 301-327.		0
13	Preparation of cyclohexanol intermediates from lignin through catalytic intervention. , 2021, , 57-82.		O