Arild Espenes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5214398/publications.pdf

Version: 2024-02-01

394421 477307 42 887 19 29 citations h-index g-index papers 43 43 43 1089 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Disease-associated PrP in the enteric nervous system of scrapie-affected Suffolk sheep. Journal of General Virology, 2003, 84, 1327-1338.	2.9	63
2	Study of possible combined toxic effects of azaspiracid-1 and okadaic acid in mice via the oral route. Toxicon, 2012, 60, 895-906.	1.6	63
3	Goats naturally devoid of PrPC are resistant to scrapie. Veterinary Research, 2020, 51, 1.	3.0	50
4	Apoptotic events induced by yessotoxin in myoblast cell lines from rat and mouse. Toxicology in Vitro, 2006, 20, 1077-1087.	2.4	43
5	Induction of apoptosis by YTX in myoblast cell lines via mitochondrial signalling transduction pathway. Toxicology in Vitro, 2006, 20, 1419-1426.	2.4	43
6	Stress Resilience of Spermatozoa and Blood Mononuclear Cells without Prion Protein. Frontiers in Molecular Biosciences, 2018, 5, 1.	3.5	42
7	Involvement of gut-associated lymphoid tissue of ruminants in the spread of transmissible spongiform encephalopathies. Advanced Drug Delivery Reviews, 2004, 56, 885-899.	13.7	41
8	Paraptosis-like cell death induced by yessotoxin. Toxicology in Vitro, 2011, 25, 1764-1770.	2.4	38
9	The PrP-like protein Doppel gene in sheep and cattle: cDNA sequence and expression. Mammalian Genome, 2001, 12, 376-379.	2.2	37
10	The Cellular Prion Protein: A Player in Immunological Quiescence. Frontiers in Immunology, 2015, 6, 450.	4.8	37
11	Yessotoxin as an apoptotic inducer. Toxicon, 2011, 57, 947-958.	1.6	36
12	Cleavage of tensin during cytoskeleton disruption in YTX-induced apoptosis. Toxicology in Vitro, 2007, 21, 9-15.	2.4	32
13	Sub-lethal dosing of azaspiracid-1 in female NMRI mice. Toxicon, 2010, 56, 1419-1425.	1.6	31
14	Dynamic expression of the prion-like protein Doppel in ovine testicular tissue. Journal of Developmental and Physical Disabilities, 2006, 29, 400-408.	3.6	27
15	Demyelinating polyneuropathy in goats lacking prion protein. FASEB Journal, 2020, 34, 2359-2375.	0.5	27
16	Combined oral toxicity of azaspiracid-1 and yessotoxin in female NMRI mice. Toxicon, 2011, 57, 909-917.	1.6	26
17	A Gly98Val Mutation in the N-Myc Downstream Regulated Gene 1 (NDRG1) in Alaskan Malamutes with Polyneuropathy. PLoS ONE, 2013, 8, e54547.	2.5	25
18	Activation of innate immune genes in caprine blood leukocytes after systemic endotoxin challenge. BMC Veterinary Research, 2016, 12, 241.	1.9	25

#	Article	IF	CITATIONS
19	Loss of prion protein induces a primed state of type I interferon-responsive genes. PLoS ONE, 2017, 12, e0179881.	2.5	22
20	The early intestinal immune response in experimental neonatal ovine cryptosporidiosis is characterized by an increased frequency of perforin expressing NCR1+ NK cells and by NCR1â^' CD8+ cell recruitment. Veterinary Research, 2015, 46, 28.	3.0	21
21	Rapid induction of experimental AA amyloidosis in mink by intravenous injection of amyloid enhancing factor. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2008, 15, 20-28.	3.0	20
22	Hematological shift in goat kids naturally devoid of prion protein. Frontiers in Cell and Developmental Biology, 2015, 3, 44.	3.7	19
23	Phenotypic characterisation of intestinal dendritic cells in sheep. Developmental and Comparative Immunology, 2008, 32, 837-849.	2.3	17
24	Yessotoxin triggers ribotoxic stress. Toxicology in Vitro, 2014, 28, 975-981.	2.4	13
25	cDNA representational difference analysis of ileal Peyer's patches in lambs after oral inoculation with scrapie. Biochemical and Biophysical Research Communications, 2004, 316, 272-279.	2.1	11
26	Cytotoxic responses in BC3H1 myoblast cell lines exposed to 1-desulfoyessotoxin. Toxicology in Vitro, 2013, 27, 1962-1969.	2.4	11
27	Exosome-Producing Follicle Associated Epithelium Is Not Involved in Uptake of PrPd from the Gut of Sheep (Ovis aries): An Ultrastructural Study. PLoS ONE, 2011, 6, e22180.	2.5	8
28	Increased PrP mRNA expression in lymphoid follicles of the ileal Peyer's patch of sheep experimentally exposed to the scrapie agent. Journal of General Virology, 2007, 88, 2083-2090.	2.9	8
29	PrP Expression, PrPSc Accumulation and Innervation of Splenic Compartments in Sheep Experimentally Infected with Scrapie. PLoS ONE, 2009, 4, e6885.	2.5	7
30	Goats without Prion Protein Display Enhanced Proinflammatory Pulmonary Signaling and Extracellular Matrix Remodeling upon Systemic Lipopolysaccharide Challenge. Frontiers in Immunology, 2017, 8, 1722.	4.8	7
31	Splenic ellipsoids: an early target for deposition of AA amyloid induced in mink. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2003, 10, 240-249.	3.0	6
32	Phenotypic characterization of cells participating in transport of prion protein aggregates across the intestinal mucosa of sheep. Prion, 2012, 6, 261-275.	1.8	5
33	Investigation of the structural and functional features of splenic ellipsoids in rainbow trout () Tj ETQq $1\ 1\ 0.784$	1314. <u>rg</u> BT/C	Overlock 10 T
34	Cloning and expression analysis of an ovine PAP-like protein cDNA, a gene differentially expressed in scrapie. Gene, 2006, 376, 116-122.	2.2	4
35	Lymphoid follicles of the ileal Peyer's patch of lambs express low levels of PrP, as demonstrated by quantitative real-time RT-PCR on microdissected tissue compartments, in situ hybridization and immunohistochemistry. Journal of General Virology, 2006, 87, 3463-3471.	2.9	4
36	Re-emergence of hereditary polyneuropathy in Scandinavian Alaskan malamute dogsâ€"old enemy or new entity? A case series. Acta Veterinaria Scandinavica, 2017, 59, 26.	1.6	3

ARILD ESPENES

#	Article	IF	CITATION
37	Cell and context-dependent sorting of neuropathy-associated protein NDRG1 – insights from canine tissues and primary Schwann cell cultures. BMC Veterinary Research, 2019, 15, 121.	1.9	3
38	Impaired NDRG1 functions in Schwann cells cause demyelinating neuropathy in a dog model of Charcot-Marie-Tooth type 4D. Neuromuscular Disorders, 2021, 31, 56-68.	0.6	3
39	A 1 bp deletion in HACE1 causes ataxia in Norwegian elkhound, black. PLoS ONE, 2022, 17, e0261845.	2.5	2
40	Prion protein in myelin maintenance: what does the goat say?. Neural Regeneration Research, 2021, 16, 1216.	3.0	1
41	Tongue atrophy as a neurological finding in hereditary polyneuropathy in Alaskan malamutes. Journal of Veterinary Internal Medicine, 2022, , .	1.6	1
42	NCR1+ cells appear early in GALT development of the ovine foetus and acquire a c-kit+ phenotype towards the end of gestation. Veterinary Immunology and Immunopathology, 2016, 169, 79-84.	1.2	0