List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5214118/publications.pdf Version: 2024-02-01

LINIXING LI

#	Article	IF	CITATIONS
1	Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Science Robotics, 2017, 2, .	9.9	1,018
2	Artificial Micromotors in the Mouse's Stomach: A Step toward <i>in Vivo</i> Use of Synthetic Motors. ACS Nano, 2015, 9, 117-123.	7.3	435
3	Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nature Communications, 2017, 8, 272.	5.8	424
4	Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale, 2013, 5, 4696.	2.8	333
5	Water-Driven Micromotors for Rapid Photocatalytic Degradation of Biological and Chemical Warfare Agents. ACS Nano, 2014, 8, 11118-11125.	7.3	316
6	3Dâ€Printed Artificial Microfish. Advanced Materials, 2015, 27, 4411-4417.	11.1	251
7	Turning Erythrocytes into Functional Micromotors. ACS Nano, 2014, 8, 12041-12048.	7.3	247
8	Rocket Science at the Nanoscale. ACS Nano, 2016, 10, 5619-5634.	7.3	241
9	Magneto–Acoustic Hybrid Nanomotor. Nano Letters, 2015, 15, 4814-4821.	4.5	239
10	Cellâ€Membrane oated Synthetic Nanomotors for Effective Biodetoxification. Advanced Functional Materials, 2015, 25, 3881-3887.	7.8	212
11	Enteric Micromotor Can Selectively Position and Spontaneously Propel in the Gastrointestinal Tract. ACS Nano, 2016, 10, 9536-9542.	7.3	211
12	Magnetically Propelled Fish‣ike Nanoswimmers. Small, 2016, 12, 6098-6105.	5.2	198
13	Highly Efficient Freestyle Magnetic Nanoswimmer. Nano Letters, 2017, 17, 5092-5098.	4.5	182
14	Ultrasound-Modulated Bubble Propulsion of Chemically Powered Microengines. Journal of the American Chemical Society, 2014, 136, 8552-8555.	6.6	177
15	Micromotors Spontaneously Neutralize Gastric Acid for pHâ€Responsive Payload Release. Angewandte Chemie - International Edition, 2017, 56, 2156-2161.	7.2	175
16	Waterâ€Powered Cellâ€Mimicking Janus Micromotor. Advanced Functional Materials, 2015, 25, 7497-7501.	7.8	147
17	Nanomotor lithography. Nature Communications, 2014, 5, 5026.	5.8	141
18	Biomimetic Plateletâ€Camouflaged Nanorobots for Binding and Isolation of Biological Threats. Advanced Materials, 2018, 30, 1704800.	11.1	139

#	Article	IF	CITATIONS
19	Template electrosynthesis of tailored-made helical nanoswimmers. Nanoscale, 2014, 6, 9415-9420.	2.8	138
20	Self-Propelled Nanomotors Autonomously Seek and Repair Cracks. Nano Letters, 2015, 15, 7077-7085.	4.5	123
21	Multifunctional Silverâ€Exchanged Zeolite Micromotors for Catalytic Detoxification of Chemical and Biological Threats. Advanced Functional Materials, 2015, 25, 2147-2155.	7.8	117
22	Transient Micromotors That Disappear When No Longer Needed. ACS Nano, 2016, 10, 10389-10396.	7.3	109
23	Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments. ACS Nano, 2017, 11, 9268-9275.	7.3	107
24	Micromotors Go In Vivo: From Test Tubes to Live Animals. Advanced Functional Materials, 2018, 28, 1705640.	7.8	106
25	Dynamics of catalytic tubular microjet engines: Dependence on geometry and chemical environment. Nanoscale, 2011, 3, 5083.	2.8	104
26	Chemotactic Guidance of Synthetic Organic/Inorganic Payloads Functionalized Sperm Micromotors. Advanced Biology, 2018, 2, 1700160.	3.0	98
27	Metal–Organic Frameworks as Micromotors with Tunable Engines and Brakes. Journal of the American Chemical Society, 2017, 139, 611-614.	6.6	96
28	Swimming Microrobot Optical Nanoscopy. Nano Letters, 2016, 16, 6604-6609.	4.5	93
29	Dryâ€Released Nanotubes and Nanoengines by Particleâ€Assisted Rolling. Advanced Materials, 2013, 25, 3715-3721.	11.1	80
30	Structureâ€Dependent Optical Modulation of Propulsion and Collective Behavior of Acoustic/Lightâ€Driven Hybrid Microbowls. Advanced Functional Materials, 2019, 29, 1809003.	7.8	79
31	Hybrid Nanovehicles: One Machine, Two Engines. Advanced Functional Materials, 2019, 29, 1806290.	7.8	77
32	Micromotor-based onâ \in off fluorescence detection of sarin and soman simulants. Chemical Communications, 2015, 51, 11190-11193.	2.2	76
33	Chemical/Lightâ€Powered Hybrid Micromotors with "Onâ€theâ€Fly―Optical Brakes. Angewandte Chemie - International Edition, 2018, 57, 8110-8114.	7.2	67
34	Topographical Manipulation of Microparticles and Cells with Acoustic Microstreaming. ACS Applied Materials & Interfaces, 2017, 9, 38870-38876.	4.0	60
35	A Human Microrobot Interface Based on Acoustic Manipulation. ACS Nano, 2019, 13, 11443-11452.	7.3	58
36	Self-Propelled and Targeted Drug Delivery of Poly(aspartic acid)/Iron–Zinc Microrocket in the Stomach. ACS Nano, 2019, 13, 1324-1332.	7.3	57

#	Article	IF	CITATIONS
37	Nanoconfined Atomic Layer Deposition of TiO 2 /Pt Nanotubes: Toward Ultrasmall Highly Efficient Catalytic Nanorockets. Advanced Functional Materials, 2017, 27, 1700598.	7.8	54
38	Bioinspired Chemical Communication between Synthetic Nanomotors. Angewandte Chemie - International Edition, 2018, 57, 241-245.	7.2	54
39	Microengine-assisted electrochemical measurements at printable sensor strips. Chemical Communications, 2015, 51, 8668-8671.	2.2	52
40	Fish-Scale-Like Intercalated Metal Oxide-Based Micromotors as Efficient Water Remediation Agents. ACS Applied Materials & Interfaces, 2019, 11, 16164-16173.	4.0	52
41	Localized plasmonic structured illumination microscopy with an optically trapped microlens. Nanoscale, 2017, 9, 14907-14912.	2.8	47
42	Effective removal of inorganic and organic heavy metal pollutants with poly(amino acid)-based micromotors. Nanoscale, 2020, 12, 5227-5232.	2.8	45
43	Hierarchical nanoporous microtubes for high-speed catalytic microengines. NPG Asia Materials, 2014, 6, e94-e94.	3.8	44
44	Whispering-gallery nanocavity plasmon-enhanced Raman spectroscopy. Scientific Reports, 2015, 5, 15012.	1.6	41
45	Vapor-Driven Propulsion of Catalytic Micromotors. Scientific Reports, 2015, 5, 13226.	1.6	40
46	Motile Micropump Based on Synthetic Micromotors for Dynamic Micropatterning. ACS Applied Materials & Interfaces, 2019, 11, 28507-28514.	4.0	37
47	Parallel Labelâ€Free Isolation of Cancer Cells Using Arrays of Acoustic Microstreaming Traps. Advanced Materials Technologies, 2019, 4, 1800374.	3.0	35
48	Chemical/Lightâ€Powered Hybrid Micromotors with "Onâ€ŧheâ€Fly―Optical Brakes. Angewandte Chemie, 2018, 130, 8242-8246.	1.6	34
49	Small-scale heat detection using catalytic microengines irradiated by laser. Nanoscale, 2013, 5, 1345.	2.8	28
50	Micromotors Spontaneously Neutralize Gastric Acid for pHâ€Responsive Payload Release. Angewandte Chemie, 2017, 129, 2188-2193.	1.6	18
51	Self-propelled screen-printable catalytic swimmers. RSC Advances, 2015, 5, 78986-78993.	1.7	16
52	Nanoimprint of ordered ferro/piezoelectric P(VDF-TrFE) nanostructures. Microelectronic Engineering, 2011, 88, 2033-2036.	1.1	14
53	Ordering and modification of nanopores in porous anodic aluminum membranes. Microelectronic Engineering, 2012, 97, 147-149.	1.1	5
54	Novel techniques for modifying microtube surfaces with various periodic structures ranging from nano to microscale. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 011806.	0.6	2

#	Article	IF	CITATIONS
55	A new technique for ferroelectric microfluidic channels by rolling method. Microelectronic Engineering, 2012, 98, 623-625.	1.1	1
56	Optical Nanoscopy using Swimming Spherical Lens. , 2017, , .		0
57	Magneto-Acoustic Hybrid Micro-/Nanorobot. , 2022, , 165-177.		0