
Orly Lazarov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5213926/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adult hippocampal neurogenesis in Alzheimer's disease. Progress in Molecular Biology and Translational Science, 2021, 177, 137-156.	0.9	20
2	Questioning the evidence for a Janus-faced nature of adult neurogenesis inÂAlzheimer's disease. Stem Cell Reports, 2021, 16, 1646-1648.	2.3	2
3	Harnessing neurogenesis in the adult brain—A role in type 2 diabetes mellitus and Alzheimer's disease. International Review of Neurobiology, 2020, 155, 235-269.	0.9	2
4	Activated Mesenchymal Stem Cells Induce Recovery Following Stroke Via Regulation of Inflammation and Oligodendrogenesis. Journal of the American Heart Association, 2020, 9, e013583.	1.6	50
5	Deficits in hippocampal neurogenesis in obesity-dependent and -independent type-2 diabetes mellitus mouse models. Scientific Reports, 2020, 10, 16368.	1.6	24
6	Depletion of Caveolin-1 in Type 2 Diabetes Model Induces Alzheimer's Disease Pathology Precursors. Journal of Neuroscience, 2019, 39, 8576-8583.	1.7	37
7	Human Hippocampal Neurogenesis Persists in Aged Adults and Alzheimer's Disease Patients. Cell Stem Cell, 2019, 24, 974-982.e3.	5.2	389
8	CREB signals as PBMC-based biomarkers of cognitive dysfunction: A novel perspective of the brain-immune axis. Brain, Behavior, and Immunity, 2019, 78, 9-20.	2.0	47
9	Vascular dysfunction—The disregarded partner of Alzheimer's disease. Alzheimer's and Dementia, 2019, 15, 158-167.	0.4	454
10	Reciprocal regulation of eNOS and caveolin-1 functions in endothelial cells. Molecular Biology of the Cell, 2018, 29, 1190-1202.	0.9	76
11	β-amyloid cytotoxicity is prevented by natural achillolide A. Journal of Natural Medicines, 2018, 72, 626-631.	1.1	7
12	Phytochemicals from Achillea fragrantissima are Modulators of AβPP Metabolism. Journal of Alzheimer's Disease, 2018, 66, 1425-1435.	1.2	5
13	Brain Biomarkers in Familial Alzheimer's Disease Mouse Models. Journal of Alzheimer's Disease, 2017, 60, 949-958.	1.2	5
14	Exercise Training for Persons with Alzheimer's Disease and Caregivers: A Review of Dyadic Exercise Interventions. Journal of Motor Behavior, 2017, 49, 365-377.	0.5	35
15	Depletion of adult neurogenesis exacerbates cognitive deficits in Alzheimer's disease by compromising hippocampal inhibition. Molecular Neurodegeneration, 2017, 12, 64.	4.4	107
16	Diminished CRE-Induced Plasticity is Linked to Memory Deficits in Familial Alzheimer's Disease Mice. Journal of Alzheimer's Disease, 2016, 50, 477-489.	1.2	43
17	Alzheimer's Disease and Hippocampal Adult Neurogenesis; Exploring Shared Mechanisms. Frontiers in Neuroscience, 2016, 10, 178.	1.4	153
18	Reduced pCREB in Alzheimer's disease prefrontal cortex is reflected in peripheral blood mononuclear cells. Molecular Psychiatry, 2016, 21, 1158-1166.	4.1	86

Orly Lazarov

#	Article	IF	CITATIONS
19	Modulation of Hallmarks of Brain Aging by Environmental Enrichment. Oxidative Stress in Applied Basic Research and Clinical Practice, 2016, , 303-319.	0.4	0
20	Hippocampal neurogenesis: Learning to remember. Progress in Neurobiology, 2016, 138-140, 1-18.	2.8	184
21	Lifestyle and Alzheimer's Disease. , 2016, , 197-237.		5
22	Type 2 Diabetes Mellitus as a Risk Factor for Alzheimer's Disease. , 2016, , 387-413.		2
23	Presenilin-1 Dependent Neurogenesis Regulates Hippocampal Learning and Memory. PLoS ONE, 2015, 10, e0131266.	1.1	29
24	Neurogenesis and Inflammation after Ischemic Stroke: What is Known and Where We Go from Here. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1573-1584.	2.4	299
25	Soluble amyloid precursor protein-α rescues age-linked decline in neural progenitor cell proliferation. Neurobiology of Aging, 2013, 34, 2431-2440.	1.5	59
26	Axonal degeneration in Alzheimer's disease: When signaling abnormalities meet the axonal transport system. Experimental Neurology, 2013, 246, 44-53.	2.0	171
27	Molecular Mechanisms of Environmental Enrichment: Impairments in Akt/CSK3β, Neurotrophin-3 and CREB Signaling. PLoS ONE, 2013, 8, e64460.	1.1	111
28	Of mice and men: neurogenesis, cognition and Alzheimer's disease. Frontiers in Aging Neuroscience, 2013, 5, 43.	1.7	61
29	All in the Family: How the APPs Regulate Neurogenesis. Frontiers in Neuroscience, 2012, 6, 81.	1.4	63
30	A Preliminary Study Targeting Neuronal Pathways Activated Following Environmental Enrichment by Resting State Functional Magnetic Resonance Imaging. Journal of Alzheimer's Disease, 2012, 32, 101-107.	1.2	15
31	Impaired survival of neural progenitor cells in dentate gyrus of adult mice lacking FMRP. Hippocampus, 2012, 22, 1220-1224.	0.9	19
32	Soluble amyloid precursor protein: a novel proliferation factor of adult progenitor cells of ectodermal and mesodermal origin. Stem Cell Research and Therapy, 2011, 2, 36.	2.4	81
33	Presenilin-1 Regulates Neural Progenitor Cell Differentiation in the Adult Brain. Journal of Neuroscience, 2011, 31, 2615-2623.	1.7	73
34	DHA diet reduces AD pathology in young APPswe/PS1ΔE9 transgenic mice: Possible gender effects. Journal of Neuroscience Research, 2010, 88, 1026-1040.	1.3	81
35	Impaired neurogenesis is an early event in the etiology of familial Alzheimer's disease in transgenic mice. Journal of Neuroscience Research, 2010, 88, 2103-2117.	1.3	283
36	Complex environment experience rescues impaired neurogenesis, enhances synaptic plasticity, and attenuates neuropathology in familial Alzheimer's diseaseâ€kinked APPswe/PS1ΔE9 mice. FASEB Journal, 2010, 24, 1667-1681.	0.2	162

Orly Lazarov

#	Article	IF	CITATIONS
37	When neurogenesis encounters aging and disease. Trends in Neurosciences, 2010, 33, 569-579.	4.2	337
38	Neurogenesis and Alzheimer's disease: At the crossroads. Experimental Neurology, 2010, 223, 267-281.	2.0	259
39	Non-Cell-Autonomous Effects of Presenilin 1 Variants on Enrichment-Mediated Hippocampal Progenitor Cell Proliferation and Differentiation. Neuron, 2008, 59, 568-580.	3.8	159
40	Impairments in Fast Axonal Transport and Motor Neuron Deficits in Transgenic Mice Expressing Familial Alzheimer's Disease-Linked Mutant Presenilin 1. Journal of Neuroscience, 2007, 27, 7011-7020.	1.7	120
41	Expression of a Familial Alzheimer's Disease-Linked Presenilin-1 Variant Enhances Perforant Pathway Lesion-Induced Neuronal Loss in the Entorhinal Cortex. Journal of Neuroscience, 2006, 26, 429-434.	1.7	27
42	Axonal Transport, Amyloid Precursor Protein, Kinesin-1, and the Processing Apparatus: Revisited. Journal of Neuroscience, 2005, 25, 2386-2395.	1.7	221
43	Nigrostriatal Dysfunction in Familial Alzheimer's Disease-Linked APPswe/PS1ÂE9 Transgenic Mice. Journal of Neuroscience, 2005, 25, 10220-10229.	1.7	79
44	Presenilin-1-Dependent Transcriptome Changes. Journal of Neuroscience, 2005, 25, 1571-1578.	1.7	42
45	Environmental Enrichment Reduces AÎ ² Levels and Amyloid Deposition in Transgenic Mice. Cell, 2005, 120, 701-713.	13.5	821
46	Transcriptome differences between the frontal cortex and hippocampus of wild-type and humanized presenilin-1 transgenic mice. American Journal of Geriatric Psychiatry, 2005, 13, 1041-51.	0.6	7
47	Evidence That Synaptically Released β-Amyloid Accumulates as Extracellular Deposits in the Hippocampus of Transgenic Mice. Journal of Neuroscience, 2002, 22, 9785-9793.	1.7	281
48	Potential Repair of Rat Spinal Cord Injuries Using Stimulated Homologous Macrophages. Neurosurgery, 1999, 44, 1041-1045.	0.6	79
49	The remedy may lie in ourselves: prospects for immune cell therapy in central nervous system protection and repair. Journal of Molecular Medicine, 1999, 77, 713-717.	1.7	67
50	Link between optic nerve regrowth failure and macrophage stimulation in mammals. Vision Research, 1999, 39, 169-175.	0.7	21
51	Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nature Medicine, 1998, 4, 814-821.	15.2	769
52	Restricted inflammatory reaction in the CNS: a key impediment to axonal regeneration?. Trends in Molecular Medicine, 1998, 4, 337-342.	2.6	74
53	Differential effects of central and peripheral nerves on macrophages and microglia. , 1998, 23, 181-190.		69
54	Transplantation of activated macrophages overcomes central nervous system regrowth failure. FASEB Journal, 1996, 10, 1296-1302.	0.2	256