Neeraj Dhar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5213857/publications.pdf

Version: 2024-02-01

109137 133063 4,869 61 35 59 h-index citations g-index papers 88 88 88 5295 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Benzothiazinones Kill <i>Mycobacterium tuberculosis</i> by Blocking Arabinan Synthesis. Science, 2009, 324, 801-804.	6.0	660
2	Dynamic Persistence of Antibiotic-Stressed Mycobacteria. Science, 2013, 339, 91-95.	6.0	495
3	Microbial phenotypic heterogeneity and antibiotic tolerance. Current Opinion in Microbiology, 2007, 10, 30-38.	2.3	279
4	Stress and Host Immunity Amplify Mycobacterium tuberculosis Phenotypic Heterogeneity and Induce Nongrowing Metabolically Active Forms. Cell Host and Microbe, 2015, 17, 32-46.	5.1	264
5	Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nature Communications, 2014, 5, 3369.	5.8	219
6	Disruption ofmptpBimpairs the ability ofMycobacterium tuberculosisto survive in guinea pigs. Molecular Microbiology, 2003, 50, 751-762.	1.2	174
7	Single-cell dynamics of the chromosome replication and cell division cycles in mycobacteria. Nature Communications, 2013, 4, 2470.	5.8	163
8	Structural Basis for Benzothiazinone-Mediated Killing of <i>Mycobacterium tuberculosis</i> Science Translational Medicine, 2012, 4, 150ra121.	5.8	159
9	Simple Model for Testing Drugs against Nonreplicating <i>Mycobacterium tuberculosis</i> Antimicrobial Agents and Chemotherapy, 2010, 54, 4150-4158.	1.4	117
10	2-Carboxyquinoxalines Kill <i>Mycobacterium tuberculosis</i> through Noncovalent Inhibition of DprE1. ACS Chemical Biology, 2015, 10, 705-714.	1.6	116
11	<i>Mycobacterium tuberculosis</i> persistence mutants identified by screening in isoniazid-treated mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12275-12280.	3.3	110
12	Nanoparticle conjugation and pulmonary delivery enhance the protective efficacy of Ag85B and CpG against tuberculosis. Vaccine, 2011, 29, 6959-6966.	1.7	107
13	Stressed Mycobacteria Use the Chaperone ClpB to Sequester Irreversibly Oxidized Proteins Asymmetrically Within and Between Cells. Cell Host and Microbe, 2015, 17, 178-190.	5.1	104
14	4-Aminoquinolone Piperidine Amides: Noncovalent Inhibitors of DprE1 with Long Residence Time and Potent Antimycobacterial Activity. Journal of Medicinal Chemistry, 2014, 57, 5419-5434.	2.9	97
15	Rapid Cytolysis of Mycobacterium tuberculosis by Faropenem, an Orally Bioavailable \hat{l}^2 -Lactam Antibiotic. Antimicrobial Agents and Chemotherapy, 2015, 59, 1308-1319.	1.4	92
16	Streptomycin-Starved Mycobacterium tuberculosis 18b, a Drug Discovery Tool for Latent Tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 5782-5789.	1.4	88
17	A lung-on-chip model of early Mycobacterium tuberculosis infection reveals an essential role for alveolar epithelial cells in controlling bacterial growth. ELife, 2020, 9, .	2.8	88
18	The Inosine Monophosphate Dehydrogenase, GuaB2, Is a Vulnerable New Bactericidal Drug Target for Tuberculosis. ACS Infectious Diseases, 2017, 3, 5-17.	1.8	83

#	Article	IF	CITATIONS
19	Rapid endotheliitis and vascular damage characterize SARSâ€CoVâ€2 infection in a human lungâ€onâ€chip model. EMBO Reports, 2021, 22, e52744.	2.0	81
20	Assessing the essentiality of the decaprenylâ€phosphoâ€ <scp>d</scp> â€arabinofuranose pathway in <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> using conditional mutants. Molecular Microbiology, 2014, 92, 194-211.	1.2	76
21	Development of a repressible mycobacterial promoter system based on two transcriptional repressors. Nucleic Acids Research, 2010, 38, e134-e134.	6.5	74
22	EspD Is Critical for the Virulence-Mediating ESX-1 Secretion System in Mycobacterium tuberculosis. Journal of Bacteriology, 2012, 194, 884-893.	1.0	66
23	<i><scp>M</scp>ycobacterium tuberculosis</i> ê€ <scp>EspB</scp> binds phospholipids and mediatesEsxAâ€independent virulence. Molecular Microbiology, 2013, 89, 1154-1166.	1.2	65
24	Dielectrophoresis-based purification of antibiotic-treated bacterial subpopulations. Lab on A Chip, 2014, 14, 1850-1857.	3.1	61
25	Division site selection linked to inherited cell surface wave troughs in mycobacteria. Nature Microbiology, 2017, 2, 17094.	5.9	61
26	Antitubercular drugs for an old target: GSK693 as a promising InhA direct inhibitor. EBioMedicine, 2016, 8, 291-301.	2.7	60
27	Enhanced and Enduring Protection against Tuberculosis by Recombinant BCG-Ag85C and Its Association with Modulation of Cytokine Profile in Lung. PLoS ONE, 2008, 3, e3869.	1.1	58
28	Phenotypic Heterogeneity in <i>Mycobacterium tuberculosis</i> . Microbiology Spectrum, 2016, 4, .	1.2	55
29	In VitroandIn VivoActivities of Three Oxazolidinones against Nonreplicating Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 3217-3223.	1.4	53
30	Whole Cell Target Engagement Identifies Novel Inhibitors of <i>Mycobacterium tuberculosis</i> Decaprenylphosphoryl-β- <scp>d</scp> -ribose Oxidase. ACS Infectious Diseases, 2015, 1, 615-626.	1.8	51
31	Phenotypic Profiling of Mycobacterium tuberculosis EspA Point Mutants Reveals that Blockage of ESAT-6 and CFP-10 Secretion <i>In Vitro</i> Does Not Always Correlate with Attenuation of Virulence. Journal of Bacteriology, 2013, 195, 5421-5430.	1.0	47
32	Dynamic persistence of UPEC intracellular bacterial communities in a human bladder-chip model of urinary tract infection. ELife, $2021,10,10$	2.8	47
33	Elicitation of efficient, protective immune responses by using DNA vaccines against tuberculosis. Vaccine, 2005, 23, 5655-5665.	1.7	37
34	The Phosphatidyl- <i>myo</i> -Inositol Mannosyltransferase PimA Is Essential for Mycobacterium tuberculosis Growth <i>In Vitro</i> and <i>In Vivo</i> Journal of Bacteriology, 2014, 196, 3441-3451.	1.0	37
35	Combinations of β-Lactam Antibiotics Currently in Clinical Trials Are Efficacious in a DHP-I-Deficient Mouse Model of Tuberculosis Infection. Antimicrobial Agents and Chemotherapy, 2015, 59, 4997-4999.	1.4	37
36	Skewing of the Th 1 /Th 2 responses in mice due to variation in the level of expression of an antigen in a recombinant BCG system. Immunology Letters, 2003, 88, 175-184.	1.1	35

#	Article	IF	Citations
37	Modulation of Host Immune Responses by Overexpression of Immunodominant Antigens of Mycobacterium tuberculosis in Bacille Calmette-Guerin. Scandinavian Journal of Immunology, 2003, 58, 449-461.	1.3	33
38	Bioluminescence for Assessing Drug Potency against Nonreplicating Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 4012-4019.	1.4	30
39	Recombinant BCG approach for development of vaccines: cloning and expression of immunodominant antigens of M. tuberculosis. FEMS Microbiology Letters, 2000, 190, 309-316.	0.7	29
40	Elucidating the role of (p)ppGpp in mycobacterial persistence against antibiotics. IUBMB Life, 2018, 70, 836-844.	1.5	28
41	Simple and Rapid Method To Determine Antimycobacterial Potency of Compounds by Using Autoluminescent Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 5801-5808.	1.4	27
42	<scp>Espl</scp> regulates the <scp>ESX</scp> â€1 secretion system in response to <scp>ATP</scp> levels in <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> . Molecular Microbiology, 2014, 93, 1057-1065.	1.2	27
43	Preexisting variation in DNA damage response predicts the fate of single mycobacteria under stress. EMBO Journal, 2019, 38, e101876.	3.5	27
44	An Amidase_3 domain-containing N-acetylmuramyl-L-alanine amidase is required for mycobacterial cell division. Scientific Reports, 2017, 7, 1140.	1.6	26
45	Immunogenicity of recombinant BCG vaccine strains overexpressing components of the antigen 85 complex of Mycobacterium tuberculosis. Medical Microbiology and Immunology, 2004, 193, 19-25.	2.6	25
46	Increased Expression of Mycobacterium tuberculosis 19 kDa Lipoprotein Obliterates the Protective Efficacy of BCG by Polarizing Host Immune Responses to the Th2 Subtype. Scandinavian Journal of Immunology, 2005, 61, 410-417.	1.3	22
47	Boosting with a DNA vaccine expressing ESAT-6 (DNAE6) obliterates the protection imparted by recombinant BCG (rBCGE6) against aerosol Mycobacterium tuberculosis infection in guinea pigs. Vaccine, 2009, 28, 63-70.	1.7	22
48	Identification of aminopyrimidineâ€sulfonamides as potent modulators of Wag31â€mediated cell elongation in mycobacteria. Molecular Microbiology, 2017, 103, 13-25.	1.2	22
49	Dielectrophoresis as a single cell characterization method for bacteria. Biomedical Physics and Engineering Express, 2017, 3, 015005.	0.6	21
50	Single-Cell Analysis of Mycobacteria Using Microfluidics and Time-Lapse Microscopy. Methods in Molecular Biology, 2015, 1285, 241-256.	0.4	18
51	Fluorescent Benzothiazinone Analogues Efficiently and Selectively Label Dpre1 in Mycobacteria and Actinobacteria. ACS Chemical Biology, 2018, 13, 3184-3192.	1.6	16
52	Early invasion of the bladder wall by solitary bacteria protects UPEC from antibiotics and neutrophil swarms in an organoid model. Cell Reports, 2021, 36, 109351.	2.9	13
53	Mycobacterium tuberculosis EspK Has Active but Distinct Roles in the Secretion of EsxA and EspB. Journal of Bacteriology, 2022, 204, e0006022.	1.0	10
54	Malachite Green Interferes with Postantibiotic Recovery of Mycobacteria. Antimicrobial Agents and Chemotherapy, 2012, 56, 3610-3614.	1.4	9

#	Article	IF	CITATIONS
55	Computational Analysis of the Mutual Constraints between Single ell Growth and Division Control Models. Advanced Biology, 2020, 4, 1900103.	3.0	9
56	Revealing Antibiotic Tolerance of the Mycobacterium smegmatis Xanthine/Uracil Permease Mutant Using Microfluidics and Single-Cell Analysis. Antibiotics, 2021, 10, 794.	1.5	5
57	Recent Advances in Tuberculosis Research in India. Advances in Biochemical Engineering/Biotechnology, 2003, 84, 211-273.	0.6	3
58	Single-Cell Analysis of Mycobacteria Using Microfluidics and Time-Lapse. Methods in Molecular Biology, 2021, 2314, 205-229.	0.4	2
59	Erratum for Boldrin et al., The Phosphatidyl- <i>myo</i> lnositol Mannosyltransferase PimA Is Essential for Mycobacterium tuberculosis Growth <i>In Vitro</i> and <i>In Vivo</i> Journal of Bacteriology, 2014, 196, 4197-4197.	1.0	1
60	Phenotypic Heterogeneity in <i>Mycobacterium tuberculosis </i> ., 0, , 671-697.		1
61	Driving polar growth. ELife, 2020, 9, .	2.8	0