Tao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5213727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	50â€Fold EQE Improvement up to 6.27% of Solutionâ€Processed Allâ€Inorganic Perovskite CsPbBr ₃ QLEDs via Surface Ligand Density Control. Advanced Materials, 2017, 29, 1603885.	21.0	982
2	A History and Perspective of Nonâ€Fullerene Electron Acceptors for Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2003570.	19.5	323
3	Multifunctional Enhancement for Highly Stable and Efficient Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2005776.	14.9	273
4	A Layer-by-Layer Architecture for Printable Organic Solar Cells Overcoming the Scaling Lag of Module Efficiency. Joule, 2020, 4, 407-419.	24.0	272
5	Molecular engineering of conjugated polymers for efficient hole transport and defect passivation in perovskite solar cells. Nano Energy, 2018, 45, 28-36.	16.0	241
6	Molecular Order Control of Non-fullerene Acceptors for High-Efficiency Polymer Solar Cells. Joule, 2019, 3, 819-833.	24.0	209
7	Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive. Nature Communications, 2020, 11, 1218.	12.8	197
8	A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy and Environmental Science, 2019, 12, 384-395.	30.8	193
9	A review of non-fullerene polymer solar cells: from device physics to morphology control. Reports on Progress in Physics, 2019, 82, 036601.	20.1	184
10	From fullerene acceptors to non-fullerene acceptors: prospects and challenges in the stability of organic solar cells. Journal of Materials Chemistry A, 2019, 7, 23361-23377.	10.3	163
11	Carbon–Oxygenâ€Bridged Ladderâ€Type Building Blocks for Highly Efficient Nonfullerene Acceptors. Advanced Materials, 2019, 31, e1804790.	21.0	139
12	Balancing the efficiency, stability, and cost potential for organic solar cells via a new figure of merit. Joule, 2021, 5, 1209-1230.	24.0	138
13	Correlating Structure with Function in Thermally Annealed PCDTBT:PC ₇₀ BM Photovoltaic Blends. Advanced Functional Materials, 2012, 22, 1399-1408.	14.9	131
14	Conjugated Small Molecule for Efficient Hole Transport in Highâ€Performance pâ€iâ€n Type Perovskite Solar Cells. Advanced Functional Materials, 2017, 27, 1702613.	14.9	131
15	Waterborne, Nanocomposite Pressure-Sensitive Adhesives with High Tack Energy, Optical Transparency, and Electrical Conductivity. Advanced Materials, 2006, 18, 2730-2734.	21.0	130
16	Ionic Additive Engineering Toward Highâ€Efficiency Perovskite Solar Cells with Reduced Grain Boundaries and Trap Density. Advanced Functional Materials, 2018, 28, 1801985.	14.9	130
17	Eliminated hysteresis and stabilized power output over 20% in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-temperature-processed TiO ₂ layer. Journal of Materials Chemistry A, 2017, 5, 9402-9411.	10.3	127
18	The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting. Soft Matter, 2010, 6, 4128.	2.7	121

#	Article	IF	CITATIONS
19	Solutionâ€Processed Polymer Solar Cells with over 17% Efficiency Enabled by an Iridium Complexation Approach. Advanced Energy Materials, 2020, 10, 2000590.	19.5	117
20	Conjugatedâ€Polymer Blends for Organic Photovoltaics: Rational Control of Vertical Stratification for High Performance. Advanced Materials, 2017, 29, 1601674.	21.0	114
21	A Phase Diagram of the P3HT:PCBM Organic Photovoltaic System: Implications for Device Processing and Performance. Macromolecules, 2011, 44, 2908-2917.	4.8	109
22	Evolution of Structure, Optoelectronic Properties, and Device Performance of Polythiophene:Fullerene Solar Cells During Thermal Annealing. Advanced Functional Materials, 2011, 21, 1383-1390.	14.9	109
23	Recent progress and challenges of organometal halide perovskite solar cells. Reports on Progress in Physics, 2016, 79, 026501.	20.1	107
24	Ladder-Type Dithienonaphthalene-Based Small-Molecule Acceptors for Efficient Nonfullerene Organic Solar Cells. Chemistry of Materials, 2017, 29, 7942-7952.	6.7	105
25	The Nanoscale Morphology of a PCDTBT:PCBM Photovoltaic Blend. Advanced Energy Materials, 2011, 1, 499-504.	19.5	99
26	Solutionâ€Processed Centimeterâ€Scale Highly Aligned Organic Crystalline Arrays for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Materials, 2020, 32, e1908388.	21.0	99
27	Aggregation of non-fullerene acceptors in organic solar cells. Journal of Materials Chemistry A, 2020, 8, 15607-15619.	10.3	99
28	Achieving over 11% power conversion efficiency in PffBT4T-2OD-based ternary polymer solar cells with enhanced open-circuit-voltage and suppressed charge recombination. Nano Energy, 2018, 44, 155-163.	16.0	94
29	Large deformation behavior and effective network chain density of swollen poly(N-isopropylacrylamide)–Laponite nanocomposite hydrogels. Soft Matter, 2012, 8, 774-783.	2.7	92
30	Fabricating High Performance, Donor–Acceptor Copolymer Solar Cells by Spray oating in Air. Advanced Energy Materials, 2013, 3, 505-512.	19.5	85
31	Design and fabrication of colloidal polymer nanocomposites. Advances in Colloid and Interface Science, 2009, 147-148, 319-332.	14.7	80
32	Soft polymer and nano-clay supracolloidal particles in adhesives: synergistic effects on mechanical properties. Soft Matter, 2009, 5, 3842.	2.7	79
33	A conjugated donor-acceptor block copolymer enables over 11% efficiency for single-component polymer solar cells. Joule, 2021, 5, 1800-1815.	24.0	77
34	Chlorinated Fullerene Dimers for Interfacial Engineering Toward Stable Planar Perovskite Solar Cells with 22.3% Efficiency. Advanced Energy Materials, 2020, 10, 2000615.	19.5	76
35	Current Status of Outdoor Lifetime Testing of Organic Photovoltaics. Advanced Science, 2018, 5, 1800434.	11.2	73
36	Environmentally durable superhydrophobic surfaces with robust photocatalytic self-cleaning and self-healing properties prepared via versatile film deposition methods. Journal of Colloid and Interface Science, 2018, 527, 107-116.	9.4	69

#	Article	IF	CITATIONS
37	Rationalizing Phase Transitions with Thermal Annealing Temperatures for P3HT:PCBM Organic Photovoltaic Devices. Macromolecules, 2012, 45, 1499-1508.	4.8	68
38	Lightâ€Soakingâ€Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Lowâ€Temperatureâ€Processed TiO ₂ Electronâ€Transport Layer. Advanced Materials, 2017, 29, 1604044.	21.0	68
39	Correlating molecular morphology with optoelectronic function in solar cells based on low band-gap copolymer:fullerene blends. Journal of Materials Chemistry C, 2013, 1, 7266.	5.5	67
40	High-performance all-polymer solar cells with only 0.47 eV energy loss. Science China Chemistry, 2020, 63, 1449-1460.	8.2	62
41	Stability Of Nonâ€Fullerene Electron Acceptors and Their Photovoltaic Devices. Advanced Functional Materials, 2021, 31, 2104552.	14.9	58
42	Poly(9-vinylcarbazole) as a hole transport material for efficient and stable inverted planar heterojunction perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 163, 210-217.	6.2	57
43	Retarding the Crystallization of a Nonfullerene Electron Acceptor for Highâ€Performance Polymer Solar Cells. Advanced Functional Materials, 2019, 29, 1807662.	14.9	57
44	Spontaneous open-circuit voltage gain of fully fabricated organic solar cells caused by elimination of interfacial energy disorder. Energy and Environmental Science, 2019, 12, 2518-2528.	30.8	57
45	Influences of Non-fullerene Acceptor Fluorination on Three-Dimensional Morphology and Photovoltaic Properties of Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 26194-26203.	8.0	57
46	Coldâ€Aging and Solvent Vapor Mediated Aggregation Control toward 18% Efficiency Binary Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2102000.	19.5	57
47	pH Dependence of the Properties of Waterborne Pressure-Sensitive Adhesives Containing Acrylic Acid. ACS Applied Materials & Interfaces, 2009, 1, 631-639.	8.0	56
48	Morphology Development in Amorphous Polymer:Fullerene Photovoltaic Blend Films During Solution Casting. Advanced Functional Materials, 2014, 24, 659-667.	14.9	55
49	Highâ€Performance Ladderâ€Type Heteroheptaceneâ€Based Nonfullerene Acceptors Enabled by Asymmetric Cores with Enhanced Noncovalent Intramolecular Interactions. Angewandte Chemie - International Edition, 2021, 60, 19314-19323.	13.8	54
50	Contrasting Effects of Energy Transfer in Determining Efficiency Improvements in Ternary Polymer Solar Cells. Advanced Functional Materials, 2018, 28, 1704212.	14.9	53
51	PCDTBT based solar cells: one year of operation under real-world conditions. Scientific Reports, 2016, 6, 21632.	3.3	52
52	Restrained light-soaking and reduced hysteresis in perovskite solar cells employing a helical perylene diimide interfacial layer. Journal of Materials Chemistry A, 2018, 6, 10379-10387.	10.3	51
53	13.9% Efficiency Ternary Nonfullerene Organic Solar Cells Featuring Low-Structural Order. ACS Energy Letters, 2019, 4, 2378-2385.	17.4	51
54	Spectral Tuning of Efficient CsPbBr _{<i>x</i>} Cl _{3–<i>x</i>} Blue Light-Emitting Diodes <i>via</i> Halogen Exchange Triggered by Benzenesulfonates. Chemistry of Materials, 2020, 32, 3211-3218.	6.7	50

#	Article	IF	CITATIONS
55	Alkyl Chain Tuning of Non-fullerene Electron Acceptors toward 18.2% Efficiency Binary Organic Solar Cells. Chemistry of Materials, 2021, 33, 8854-8862.	6.7	50
56	Correlating Threeâ€dimensional Morphology With Function in PBDBâ€T:ITâ€M Nonâ€Fullerene Organic Solar Cells. Solar Rrl, 2018, 2, 1800114.	5.8	49
57	Fluorinated solid additives enable high efficiency non-fullerene organic solar cells. Journal of Materials Chemistry A, 2020, 8, 4230-4238.	10.3	47
58	The Intrinsic Role of Molecular Mass and Polydispersity Index in Highâ€Performance Nonâ€Fullerene Polymer Solar Cells. Advanced Energy Materials, 2021, 11, .	19.5	47
59	Highly Efficient and Stable All-Polymer Solar Cells Enabled by Near-Infrared Isomerized Polymer Acceptors. Chemistry of Materials, 2021, 33, 761-773.	6.7	47
60	Protein Nanopatterning on Self-Organized Poly(styrene- <i>b</i> -isoprene) Thin Film Templates. Langmuir, 2009, 25, 4526-4534.	3.5	46
61	Grain size dependence of degradation of aluminium/calcium cathodes in organic solar cells following exposure to humid air. Solar Energy Materials and Solar Cells, 2015, 140, 25-32.	6.2	45
62	Simultaneously Enhanced Efficiency and Operational Stability of Nonfullerene Organic Solar Cells via Solidâ€Additiveâ€Mediated Aggregation Control. Small, 2021, 17, e2102558.	10.0	45
63	Correlating the electron-donating core structure with morphology and performance of carbon oxygen-bridged ladder-type non-fullerene acceptor based organic solar cells. Nano Energy, 2019, 61, 318-326.	16.0	43
64	Achieving Ecoâ€Compatible Organic Solar Cells with Efficiency >16.5% Based on an Iridium Complexâ€Incorporated Polymer Donor. Solar Rrl, 2020, 4, 2000156.	5.8	43
65	High-performance all-small-molecule organic solar cells without interlayers. Energy and Environmental Science, 2021, 14, 3174-3183.	30.8	43
66	Morphology and efficiency enhancements of PTB7-Th:ITIC nonfullerene organic solar cells processed via solvent vapor annealing. Journal of Energy Chemistry, 2019, 37, 148-156.	12.9	42
67	Anthracene-based donor–acceptor low band gap polymers for application in solar cells. Chemical Communications, 2013, 49, 2252.	4.1	41
68	The role of dynamic measurements in correlating structure with optoelectronic properties in polymer : fullerene bulk-heterojunction solar cells. Reports on Progress in Physics, 2013, 76, 022501.	20.1	41
69	Efficient planar heterojunction perovskite solar cells with weak hysteresis fabricated via bar coating. Solar Energy Materials and Solar Cells, 2017, 159, 412-417.	6.2	41
70	Halogen-substituted fullerene derivatives for interface engineering of perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 21368-21378.	10.3	40
71	Tuning of the Interconnecting Layer for Monolithic Perovskite/Organic Tandem Solar Cells with Record Efficiency Exceeding 21%. Nano Letters, 2021, 21, 7845-7854.	9.1	40
72	PEDOT:PSSâ€Free Polymer Nonâ€Fullerene Polymer Solar Cells with Efficiency up to 18.60% Employing a Binaryâ€Solventâ€Chlorinated ITO Anode. Advanced Functional Materials, 2021, 31, 2106846.	14.9	40

#	Article	IF	CITATIONS
73	Ligandâ€Exchange of Lowâ€Temperature Synthesized CsPbBr ₃ Perovskite toward Highâ€Efficiency Lightâ€Emitting Diodes. Small Methods, 2019, 3, 1800489.	8.6	38
74	Modulation of J-Aggregation of Nonfullerene Acceptors toward Near-Infrared Absorption and Enhanced Efficiency. Macromolecules, 2020, 53, 3747-3755.	4.8	38
75	Organic photovoltaic devices with enhanced efficiency processed from non-halogenated binary solvent blends. Organic Electronics, 2015, 21, 216-222.	2.6	37
76	Non-fullerene acceptor fibrils enable efficient ternary organic solar cells with 16.6% efficiency. Science China Chemistry, 2020, 63, 1461-1468.	8.2	37
77	Organic Ligands Armored ZnO Enhances Efficiency and Stability of CsPbI ₂ Br Perovskite Solar Cells. Advanced Science, 2020, 7, 2000421.	11.2	35
78	Competition between substrate-mediated π-π stacking and surface-mediated Tg depression in ultrathin conjugated polymer films. European Physical Journal E, 2012, 35, 9807.	1.6	34
79	Solution-processed Graphene-MoS2 heterostructure for efficient hole extraction in organic solar cells. Carbon, 2019, 142, 156-163.	10.3	34
80	The impacts of PbI ₂ purity on the morphology and device performance of one-step spray-coated planar heterojunction perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 436-443.	4.9	34
81	A Molecular Mechanism for Toughening and Strengthening Waterborne Nanocomposites. Advanced Materials, 2008, 20, 90-94.	21.0	33
82	Recent progress and prospects of integrated perovskite/organic solar cells. Applied Physics Reviews, 2020, 7, .	11.3	33
83	Asymmetric and Halogenated Fusedâ€Ring Electron Acceptor for Efficient Organic Solar Cells. Advanced Functional Materials, 2021, 31, 2102189.	14.9	33
84	Baseplate Temperatureâ€Dependent Vertical Composition Gradient in Pseudoâ€Bilayer Films for Printing Nonâ€Fullerene Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2102135.	19.5	33
85	Solid-state cooling by elastocaloric polymer with uniform chain-lengths. Nature Communications, 2022, 13, 9.	12.8	33
86	Comparative indoor and outdoor stability measurements of polymer based solar cells. Scientific Reports, 2017, 7, 1305.	3.3	32
87	Regulating the morphology of fluorinated non-fullerene acceptor and polymer donor via binary solvent mixture for high efficiency polymer solar cells. Science China Chemistry, 2019, 62, 1221-1229.	8.2	32
88	A binary solvent system for improved liquid phase exfoliation of pristine graphene materials. Carbon, 2015, 94, 405-411.	10.3	31
89	Improving Photovoltaic Performance of Nonâ€Fullerene Polymer Solar Cells Enables by Fineâ€Tuning Blend Microstructure via Binary Solvent Mixtures. Advanced Functional Materials, 2021, 31, 2008767.	14.9	31
90	Eliminating Light-Soaking Instability in Planar Heterojunction Perovskite Solar Cells by Interfacial Modifications. ACS Applied Materials & Interfaces, 2018, 10, 33144-33152.	8.0	30

#	Article	IF	CITATIONS
91	Trap passivation and efficiency improvement of perovskite solar cells by a guanidinium additive. Materials Chemistry Frontiers, 2019, 3, 1357-1364.	5.9	30
92	Constructing enhanced pseudocapacitive Li+ intercalation via multiple ionically bonded interfaces toward advanced lithium storage. Energy Storage Materials, 2020, 24, 138-146.	18.0	30
93	Simultaneous Enhanced Device Efficiency and Color Neutrality in Semitransparent Organic Photovoltaics Employing a Synergy of Ternary Strategy and Optical Engineering. Advanced Functional Materials, 2022, 32, .	14.9	30
94	Synthesis of EVA-g-MAH and its compatibilization effect to PA11/PVC blends. Journal of Materials Science, 2007, 42, 3398.	3.7	28
95	Importance of Molecular Friction in a Soft Polymerâ^'Nanotube Nanocomposite. Macromolecules, 2008, 41, 7656-7661.	4.8	28
96	Waterborne, Semicrystalline, Pressure-Sensitive Adhesives with Temperature-Responsiveness and Optimum Properties. ACS Applied Materials & amp; Interfaces, 2010, 2, 443-451.	8.0	28
97	Bright perovskite light-emitting diodes with improved film morphology and reduced trap density via surface passivation using quaternary ammonium salts. Organic Electronics, 2019, 67, 187-193.	2.6	28
98	Deviations of the glass transition temperature in amorphous conjugated polymer thin films. Physical Review E, 2013, 88, 022601.	2.1	27
99	Impact of fluorine substitution upon the photovoltaic properties of benzothiadiazole-fluorene alternate copolymers. RSC Advances, 2015, 5, 46386-46394.	3.6	27
100	High efficiency arrays of polymer solar cells fabricated by sprayâ€coating in air. Progress in Photovoltaics: Research and Applications, 2016, 24, 275-282.	8.1	27
101	Dependence on material choice of degradation of organic solar cells following exposure to humid air. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 216-224.	2.1	27
102	TDI/TiO ₂ Hybrid Networks for Superhydrophobic Coatings with Superior UV Durability and Cation Adsorption Functionality. ACS Applied Materials & Interfaces, 2019, 11, 7488-7497.	8.0	27
103	Dopant-free polymeric hole transport materials for efficient CsPbI ₂ Br perovskite cells with a fill factor exceeding 84%. Journal of Materials Chemistry C, 2020, 8, 8507-8514.	5.5	27
104	Optimising the efficiency of carbazole co-polymer solar-cells by control over the metal cathode electrode. Organic Electronics, 2012, 13, 1401-1408.	2.6	26
105	Organic photovoltaic devices incorporating a molybdenum oxide hole-extraction layer deposited by spray-coating from an ammonium molybdate tetrahydrate precursor. Organic Electronics, 2014, 15, 692-700.	2.6	26
106	Temperature Induced Aggregation of Organic Semiconductors. Chemistry - A European Journal, 2021, 27, 2908-2919.	3.3	26
107	Cross-Linked Network Development in Compatibilized Alkyd/Acrylic Hybrid Latex Films for the Creation of Hard Coatings. Langmuir, 2010, 26, 14323-14333.	3.5	25
108	Air processed organic photovoltaic devices incorporating a MoOx anode buffer layer. Applied Physics Letters, 2013, 102, 183303.	3.3	25

#	Article	IF	CITATIONS
109	Vertical stratification and its impact on device performance in a polycarbazole based copolymer solar cells. Journal of Materials Chemistry C, 2015, 3, 4007-4015.	5.5	25
110	Evolution of molecular aggregation in bar-coated non-fullerene organic solar cells. Materials Chemistry Frontiers, 2019, 3, 1062-1070.	5.9	25
111	Facile preparation of pristine graphene using urea/glycerol as efficient stripping agents. Nano Research, 2018, 11, 820-830.	10.4	22
112	Molecular Ordering and Performance of Ternary Nonfullerene Organic Solar Cells via Bar-Coating in Air with an Efficiency over 13%. ACS Applied Materials & Interfaces, 2019, 11, 35827-35834.	8.0	21
113	Alkoxythiophene and alkylthiothiophene π-bridges enhance the performance of A–D–A electron acceptors. Materials Chemistry Frontiers, 2019, 3, 492-495.	5.9	21
114	Improved Performance of Perovskite Light-Emitting Diodes by Dual Passivation with an Ionic Additive. ACS Applied Energy Materials, 2019, 2, 3336-3342.	5.1	21
115	Heating induced aggregation in non-fullerene organic solar cells towards high performance. Journal of Energy Chemistry, 2021, 54, 131-137.	12.9	21
116	Enhancing the efficiency of PTB7-Th:CO <i>i</i> 8DFIC-based ternary solar cells with versatile third components. Applied Physics Reviews, 2019, 6, .	11.3	20
117	Non-fullerene acceptor pre-aggregates enable high efficiency pseudo-bulk heterojunction organic solar cells. Science China Chemistry, 2022, 65, 373-381.	8.2	20
118	Sodium bromide additive improved film morphology and performance in perovskite light-emitting diodes. Applied Physics Letters, 2017, 111, .	3.3	19
119	Versatile Device Architectures for High-Performing Light-Soaking-Free Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 32678-32687.	8.0	18
120	An effective surface modification strategy with high reproducibility for simultaneously improving efficiency and stability of inverted MA-free perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 21476-21487.	10.3	18
121	Contrasting Effects of Organic Chloride Additives on Performance of Direct and Inverted Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2019, 11, 37833-37841.	8.0	17
122	Hotâ€Casting Boosts Efficiency of Halogenâ€Free Solvent Processed Nonâ€Fullerene Organic Solar Cells. Advanced Functional Materials, 2021, 31, 2105794.	14.9	17
123	An alternative approach to the modification of talc for the fabrication of polypropylene/talc composites. Journal of Applied Polymer Science, 2007, 106, 386-393.	2.6	16
124	Mesoporous silica hybrids as an antireflective coating to enhance light harvesting and achieve over 16% efficiency of organic solar cells. Journal of Materials Chemistry C, 2019, 7, 14962-14969.	5.5	14
125	Thickness-dependent glass transition temperature and charge mobility in cross-linked polyfluorene thin films. Physical Review E, 2016, 94, 052503.	2.1	13
126	Fabricating high performance conventional and inverted polymer solar cells by spray coating in air. Vacuum, 2017, 139, 154-158.	3.5	13

#	Article	IF	CITATIONS
127	A Near-Infrared Polymer Acceptor Enables over 15% Efficiency for All-Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2022, 40, 877-888.	3.8	13
128	Preparation and structural characterization of nanocrystalline poly(vinyl chloride). Journal of Applied Polymer Science, 2004, 91, 563-569.	2.6	12
129	Preparation and properties of compatibilized PVC/SMA-g-PA6 blends. Journal of Applied Polymer Science, 2004, 94, 432-439.	2.6	12
130	Thiophene Terminated Fullerene Derivatives for Interfacial Modification toward High Efficiency MAPbl ₃ Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 9824-9832.	5.1	12
131	Photoconductive Charge Transfer Complexes as Charge Transport Layers for High Performance Inverted Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	12
132	Co ₃ O ₄ /C/graphene nanocomposites as novel anode materials for high capacity lithium ion batteries. RSC Advances, 2015, 5, 73677-73683.	3.6	11
133	Minimizing the Thickness of Ethoxylated Polyethylenimine to Produce Stable Lowâ€Work Function Interface for Nonfullerene Organic Solar Cells. Advanced Energy and Sustainability Research, 2021, 2, 2000094.	5.8	11
134	Remove the water-induced traps toward improved performance in organic solar cells. Science China Materials, 2021, 64, 2629-2644.	6.3	11
135	Facile fabrication of robust and healable superhydrophobic cotton fabric with flower-like Ni(OH)2@ODA micro-nanoparticles. Cellulose, 2021, 28, 581-592.	4.9	10
136	Bilayer broadband antireflective coating to achieve planar heterojunction perovskite solar cells with 23.9% efficiency. Science China Materials, 2021, 64, 789-797.	6.3	10
137	Heatingâ€induced aggregation control for efficient sequentialâ€cast organic solar cells. Aggregate, 2022, 3, e104.	9.9	10
138	Reduced miscibility between highly compatible non-fullerene acceptor and donor enables efficient ternary organic solar cells. Polymer, 2021, 236, 124322.	3.8	10
139	Revealing the microstructure-related light-induced degradation for all-polymer solar cells based on regioisomerized end-capping group acceptors. Journal of Materials Chemistry C, 2022, 10, 1246-1258.	5.5	10
140	Polymer-based solar cells having an active area of 1.6 cm2 fabricated via spray coating. APL Materials, 2015, 3, .	5.1	9
141	Polymer Light Emitting Diodes Powered via Paper-Mounted Electronics. Journal of Display Technology, 2016, 12, 583-588.	1.2	9
142	Highâ€Performance Ladderâ€īype Heteroheptaceneâ€Based Nonfullerene Acceptors Enabled by Asymmetric Cores with Enhanced Noncovalent Intramolecular Interactions. Angewandte Chemie, 2021, 133, 19463-19472.	2.0	9
143	Enhanced Efficiency and Stability of Quasiâ€2D Perovskite Lightâ€Emitting Diodes with Crosslinkable Alkenyl Amine Cations. Advanced Optical Materials, 2021, 9, 2101475.	7.3	9
144	Polymer/non-fullerene acceptor bulk heterojunction nanoparticles for efficient photocatalytic hydrogen production from water. Polymer, 2022, 244, 124667.	3.8	9

#	Article	IF	CITATIONS
145	A chemical sensor based on a photonic-crystal L3 nanocavity defined in a silicon-nitride membrane. Journal of Materials Chemistry C, 2014, 2, 8700-8706.	5.5	8
146	Improved efficiency in fullerene and non-fullerene polymer solar cells having an interdigitated interface with the electron transport layer. Materials Chemistry Frontiers, 2018, 2, 1859-1865.	5.9	8
147	Methylammonium-Mediated Crystallization of Cesium-Based 2D/3D Perovskites toward High-Efficiency Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 43452-43459.	8.0	8
148	Binary Additive Engineering Enables Efficient Perovskite Solar Cells via Spray-Coating in Air. ACS Applied Energy Materials, 2021, 4, 11496-11504.	5.1	8
149	Surface and Interface Modified Thermal, Structural and Charge Transport Properties in Conjugated Polymer Thin Films. Advanced Materials Interfaces, 2016, 3, 1600084.	3.7	7
150	Correlating Nanoscale Morphology with Device Performance in Conventional and Inverted PffBT4T-2OD:PC ₇₁ BM Polymer Solar Cells. ACS Applied Energy Materials, 2018, 1, 3505-3512.	5.1	7
151	Two similar near-infrared (IR) non-fullerene acceptors as near IR sensitizers for ternary solar cells. Organic Electronics, 2020, 85, 105880.	2.6	7
152	Quasi-2D bromide perovskite nanocrystals with narrow phase distribution prepared using ternary organic cations for sky-blue light-emitting diodes. Applied Physics Letters, 2021, 118, 083302.	3.3	7
153	Fineâ€Tuning Aggregation of Nonfullerene Acceptor Enables Highâ€Efficiency Organic Solar Cells. Small Structures, 2021, 2, 2100055.	12.0	7
154	Efficient and Spectrally Stable Blue Light-Emitting Diodes Based on Diphenylguanidine Bromide Passivated Mixed-Halide Perovskites. ACS Applied Electronic Materials, 2021, 3, 4912-4918.	4.3	7
155	Study on morphology of compatibilized poly (vinyl chloride)/ultrafine polyamide-6 blends by styrene-maleic anhydride. Journal of Applied Polymer Science, 2005, 97, 850-854.	2.6	6
156	Photophysics and morphology of a polyfluorene donor–acceptor triblock copolymer for solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1705-1718.	2.1	6
157	Hydrothermally Treated TiO 2 Nanorods as Electron Transport Layer in Planar Perovskite Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000238.	1.8	6
158	Instability of hydrophobic and viscoelastic polymer thin films in water at room temperature. Journal of Physics Condensed Matter, 2013, 25, 415101.	1.8	5
159	Conjugated amidine ligands enhance the performance of perovskite nanocrystal blue light-emitting diodes prepared in air with green solvents. Journal of Materials Chemistry C, 2021, 9, 15488-15495.	5.5	5
160	An asymmetry strategy to reduce excessive aggregation of brominated non-fullerene acceptors for enhanced efficiency of organic solar cells. Organic Electronics, 2022, 100, 106357.	2.6	5
161	Triisopropylsilylacetylene-functionalised anthracene-alt-benzothiadiazole copolymers for application in bulk heterojunction solar cells. RSC Advances, 2015, 5, 101607-101615.	3.6	4
162	Self-suspended polyaniline containing self-dissolved lyotropic liquid crystal with electrical conductivity. Journal of Polymer Science Part A, 2016, 54, 3578-3582.	2.3	4

#	Article	IF	CITATIONS
163	Efficient Hole Transfer via CsPbBr∢sub>3 Quantum Dots Doping toward Highâ€Performance Organic Solar Cells. Solar Rrl, 2021, 5, 2100499.	5.8	3
164	Bulk Heterojunction Morphology Control and Characterization. , 2014, , 317-366.		2
165	In-Situ Reaction Influenced Polyamide 11 Crystallization in Polymer Blends. Polymer-Plastics Technology and Engineering, 2007, 46, 893-899.	1.9	1
166	Frontispiece: Temperature Induced Aggregation of Organic Semiconductors. Chemistry - A European Journal, 2021, 27, .	3.3	0
167	Polymer Solar Cells Fabricated by Spray Coating in Air. , 2015, , .		0