Dennis W J Klomp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5212290/publications.pdf

Version: 2024-02-01

83 papers 2,800 citations

304743 22 h-index 197818 49 g-index

85 all docs 85 docs citations

85 times ranked 3745 citing authors

#	Article	IF	CITATIONS
1	Clinical Proton MR Spectroscopy in Central Nervous System Disorders. Radiology, 2014, 270, 658-679.	7.3	524
2	Methodological consensus on clinical proton MRS of the brain: Review and recommendations. Magnetic Resonance in Medicine, 2019, 82, 527-550.	3.0	280
3	Short echo time ¹ Hâ€MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses. Magnetic Resonance in Medicine, 2008, 59, 1-6.	3.0	257
4	The fractionated dipole antenna: A new antenna for body imaging at 7 <scp>T</scp> esla. Magnetic Resonance in Medicine, 2016, 75, 1366-1374.	3.0	181
5	RF coils: A practical guide for nonphysicists. Journal of Magnetic Resonance Imaging, 2018, 48, 590-604.	3.4	137
6	GABA and glutamate in schizophrenia: A 7ÂT 1H-MRS study. Neurolmage: Clinical, 2014, 6, 398-407.	2.7	129
7	³¹ P MRSI and ¹ H MRS at 7 T: initial results in human breast cancer. NMR in Biomedicine, 2011, 24, 1337-1342.	2.8	116
8	Amide proton transfer imaging of the human breast at 7T: development and reproducibility. NMR in Biomedicine, 2013, 26, 1271-1277.	2.8	58
9	On the magnetic field dependence of deuterium metabolic imaging. NMR in Biomedicine, 2020, 33, e4235.	2.8	46
10	Quantitative ³¹ P magnetic resonance spectroscopy of the human breast at 7 T. Magnetic Resonance in Medicine, 2012, 68, 339-348.	3.0	45
11	An 8-channel Tx/Rx dipole array combined with 16 Rx loops for high-resolution functional cardiac imaging at 7ÂT. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2018, 31, 7-18.	2.0	42
12	Lipid suppression for brain MRI and MRSI by means of a dedicated crusher coil. Magnetic Resonance in Medicine, 2015, 73, 2062-2068.	3.0	41
13	Analysis of chemical exchange saturation transfer contributions from brain metabolites to the Z-spectra at various field strengths and pH. Scientific Reports, 2019, 9, 1089.	3.3	40
14	Detection of early cartilage damage: feasibility and potential of gagCEST imaging at 7T. European Radiology, 2018, 28, 2874-2881.	4.5	39
15	Amide chemical exchange saturation transfer at 7ÂT: a possible biomarker for detecting early response to neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Research, 2018, 20, 51.	5.0	36
16	On the transmit field inhomogeneity correction of relaxationâ€compensated amide and NOE CEST effects at 7ÅT. NMR in Biomedicine, 2017, 30, e3687.	2.8	34
17	Using a whole-body 31P birdcage transmit coil and 16-element receive array for human cardiac metabolic imaging at 7T. PLoS ONE, 2017, 12, e0187153.	2.5	34
18	Multiparametric MRI With Dynamic Contrast Enhancement, Diffusion-Weighted Imaging, and 31-Phosphorus Spectroscopy at 7 T for Characterization of Breast Cancer. Investigative Radiology, 2015, 50, 766-771.	6.2	31

#	Article	IF	Citations
19	¹ H–MRS processing parameters affect metabolite quantification: The urgent need for uniform and transparent standardization. NMR in Biomedicine, 2017, 30, e3804.	2.8	31
20	Single Session Imaging of Cerebellum at 7 Tesla: Obtaining Structure and Function of Multiple Motor Subsystems in Individual Subjects. PLoS ONE, 2015, 10, e0134933.	2.5	28
21	Radiofrequency configuration to facilitate bilateral breast31P MR spectroscopic imaging and high-resolution MRI at 7 Tesla. Magnetic Resonance in Medicine, 2015, 74, 1803-1810.	3.0	26
22	Comparison of pulsed three-dimensional CEST acquisition schemes at 7 tesla: steady state versus pseudosteady state. Magnetic Resonance in Medicine, 2017, 77, 2280-2287.	3.0	25
23	Introduction of the snake antenna array: Geometry optimization of a sinusoidal dipole antenna for 10.5T body imaging with lower peak SAR. Magnetic Resonance in Medicine, 2020, 84, 2885-2896.	3.0	25
24	Pushing functional MRI spatial and temporal resolution further: Highâ€density receive arrays combined with shotâ€selective 2D CAIPIRINHA for 3D echoâ€planar imaging at 7 T. NMR in Biomedicine, 2020, 33, e4281.	2.8	25
25	GLS hyperactivity causes glutamate excess, infantile cataract and profound developmental delay. Human Molecular Genetics, 2019, 28, 96-104.	2.9	23
26	Intelligence and Brain Efficiency: Investigating the Association between Working Memory Performance, Glutamate, and GABA. Frontiers in Psychiatry, 2017, 8, 154.	2.6	21
27	Contradiction between amide EST signal and pH in breast cancer explained with metabolic MRI. NMR in Biomedicine, 2019, 32, e4110.	2.8	20
28	Early detection of changes in phospholipid metabolism during neoadjuvant chemotherapy in breast cancer patients using phosphorus magnetic resonance spectroscopy at 7T. NMR in Biomedicine, 2019, 32, e4086.	2.8	20
29	Amide proton transfer (APT) imaging of brain tumors at 7 T: The role of tissue water T1-Relaxation properties. Magnetic Resonance in Medicine, 2017, 77, 1525-1532.	3.0	19
30	Selective protonâ€observed, carbonâ€edited (selPOCE) MRS method for measurement of glutamate and glutamine ¹³ Câ€labeling in the human frontal cortex. Magnetic Resonance in Medicine, 2018, 80, 11-20.	3.0	19
31	Comparing signalâ€toâ€noise ratio for prostate imaging at 7T and 3T. Journal of Magnetic Resonance Imaging, 2019, 49, 1446-1455.	3.4	19
32	Potential acceleration performance of a 256â€channel wholeâ€brain receive array at 7 T. Magnetic Resonance in Medicine, 2019, 81, 1659-1670.	3.0	17
33	Lipidâ€suppressed and tissueâ€fraction corrected metabolic distributions in human central brain structures using 2D ¹ H magnetic resonance spectroscopic imaging at 7 T. Brain and Behavior, 2020, 10, e01852.	2.2	17
34	Measuring motion-induced B ₀ -fluctuations in the brain using field probes. Magnetic Resonance in Medicine, 2016, 75, 2020-2030.	3.0	15
35	PCA denoising and Wiener deconvolution of ³¹ P 3D CSI data to enhance effective SNR and improve point spread function. Magnetic Resonance in Medicine, 2021, 85, 2992-3009.	3.0	15
36	1H/31P Polarization Transfer at 9.4 Tesla for Improved Specificity of Detecting Phosphomonoesters and Phosphodiesters in Breast Tumor Models. PLoS ONE, 2014, 9, e102256.	2.5	14

#	Article	IF	CITATIONS
37	Proton and phosphorus magnetic resonance spectroscopy of the healthy human breast at 7ÂT. NMR in Biomedicine, 2017, 30, e3684.	2.8	14
38	Tailored spiral inâ€out spectralâ€spatial water suppression pulses for magnetic resonance spectroscopic imaging. Magnetic Resonance in Medicine, 2018, 79, 31-40.	3.0	14
39	³¹ P T ₂ s of phosphomonoesters, phosphodiesters, and inorganic phosphate in the human brain at 7T. Magnetic Resonance in Medicine, 2018, 80, 29-35.	3.0	14
40	Introduction of Ultra-High-Field MR Imaging in Infants: Preparations and Feasibility. American Journal of Neuroradiology, 2020, 41, 1532-1537.	2.4	14
41	¹⁹ F MRSI of capecitabine in the liver at 7 T using broadband transmit–receive antennas a dualâ€band RF pulses. NMR in Biomedicine, 2015, 28, 1433-1442.	and 2.8	13
42	Glycerophosphocholine and Glycerophosphoethanolamine Are Not the Main Sources of the In Vivo31P MRS Phosphodiester Signals from Healthy Fibroglandular Breast Tissue at 7 T. Frontiers in Oncology, 2016, 6, 29.	2.8	13
43	High-resolution T2-weighted cervical cancer imaging: a feasibility study on ultra-high-field 7.0-T MRI with an endorectal monopole antenna. European Radiology, 2017, 27, 938-945.	4.5	13
44	MRI and ³¹ P magnetic resonance spectroscopy hardware for axillary lymph node investigation at 7T. Magnetic Resonance in Medicine, 2015, 73, 2038-2046.	3.0	10
45	Proton observed phosphorus editing (POPE) for <i>in vivo</i> detection of phospholipid metabolites. NMR in Biomedicine, 2016, 29, 1222-1230.	2.8	10
46	SNR optimized ³¹ P functional MRS to detect mitochondrial and extracellular pH change during visual stimulation. NMR in Biomedicine, 2019, 32, e4137.	2.8	10
47	Homogeneous <i>B</i> ₁ ⁺ for bilateral breast imaging at 7ÂT using a five dipole transmit array merged with a high density receive loop array. NMR in Biomedicine, 2019, 32, e4039.	2.8	10
48	Whole brain P MRSI at 7T with a dualâ€ŧuned receive array. Magnetic Resonance in Medicine, 2020, 83, 765-775.	3.0	10
49	Feasibility of 31 P spectroscopic imaging at 7 T in lung carcinoma patients. NMR in Biomedicine, 2021, 34, e4204.	2.8	10
50	The Coax Dipole: A fully flexible coaxial cable dipole antenna with flattened current distribution for body imaging at 7 Tesla. Magnetic Resonance in Medicine, 2022, 87, 528-540.	3.0	10
51	Is there any difference in Amide and NOE CEST effects between white and gray matter at 7 T?. Journal of Magnetic Resonance, 2016, 272, 82-86.	2.1	9
52	Dynamic contrast-enhanced breast MRI at 7T and 3T: an intra-individual comparison study. SpringerPlus, 2016, 5, 13.	1.2	9
53	Comparison of 2-Hydroxyglutarate Detection With sLASER and MEGA-sLASER at 7T. Frontiers in Neurology, 2021, 12, 718423.	2.4	9
54	Tilt optimized flip uniformity (TOFU) RF pulse for uniform image contrast at low specific absorption rate levels in combination with a surface breast coil at 7 Tesla. Magnetic Resonance in Medicine, 2015, 74, 482-488.	3.0	8

#	Article	IF	CITATIONS
55	Dielectric waveguides for ultrahigh field magnetic resonance imaging. Magnetic Resonance in Medicine, 2016, 76, 1314-1324.	3.0	8
56	A comparison of navigators, snapâ€shot field monitoring, and probeâ€based field model training for correcting B ₀ â€induced artifacts in â€weighted images at 7 T. Magnetic Resonance in Medicine, 2017, 78, 1373-1382.	3.0	8
57	Detection of Glutamate Alterations in the Human Brain Using 1H-MRS: Comparison of STEAM and sLASER at 7 T. Frontiers in Psychiatry, 2017, 8, 60.	2.6	8
58	Shortening of apparent transverse relaxation time of inorganic phosphate as a breast cancer biomarker. NMR in Biomedicine, 2019, 32, e4011.	2.8	8
59	A plugâ€andâ€play, lightweight, singleâ€axis gradient insert design for increasing spatiotemporal resolution in echo planar imagingâ€based brain imaging. NMR in Biomedicine, 2021, 34, e4499.	2.8	8
60	A silent gradient axis for soundless spatial encoding to enable fast and quiet brain imaging. Magnetic Resonance in Medicine, 2022, 87, 1062-1073.	3.0	8
61	In vivo biochemical assessment of cartilage with gagCEST MRI: Correlation with cartilage properties. NMR in Biomedicine, 2021, 34, e4463.	2.8	8
62	Residual quadrupolar couplings observed in 7 Tesla deuterium MR spectra of skeletal muscle. Magnetic Resonance in Medicine, 2022, 87, 1165-1173.	3.0	8
63	Maximizing sensitivity for fast GABA edited spectroscopy in the visual cortex at 7ÂT. NMR in Biomedicine, 2018, 31, e3890.	2.8	7
64	Establishing upper limits on neuronal activity–evoked pH changes with APTâ€CEST MRI at 7 T. Magnetic Resonance in Medicine, 2018, 80, 126-136.	3.0	7
65	Inherently decoupled ^{1} H antennas and ^{31} P loops for metabolic imaging of liver metastasis at 7 T . NMR in Biomedicine, 2020, 33, e4221.	2.8	7
66	A local multiâ€transmit coil combined with a highâ€density receive array for cerebellar fMRI at 7 T. NMR in Biomedicine, 2021, 34, e4586.	2.8	7
67	High field MRI in clinical practice. Drug Discovery Today: Technologies, 2011, 8, e103-e108.	4.0	6
68	T2* mapping in an equine articular groove model: Visualizing changes in collagen orientation. Journal of Orthopaedic Research, 2020, 38, 2383-2389.	2.3	6
69	2D AMESING multi-echo 31P-MRSI of the liver at 7T allows transverse relaxation assessment and T2-weighted averaging for improved SNR. Magnetic Resonance Imaging, 2016, 34, 219-226.	1.8	4
70	Ultraâ€high field MRI: what is in full bloom and what is sprouting?. NMR in Biomedicine, 2016, 29, 1120-1121.	2.8	4
71	Fat suppression techniques for obtaining high resolution dynamic contrast enhanced bilateral breast MR images at 7 T. Magnetic Resonance Imaging, 2016, 34, 462-468.	1.8	4
72	Design of a forward view antenna for prostate imaging at 7 T. NMR in Biomedicine, 2018, 31, e3993.	2.8	4

#	Article	IF	CITATIONS
73	Comparison of four MR carotid surface coils at 3T. PLoS ONE, 2019, 14, e0213107.	2.5	4
74	Can sodium MRI be used as a method for mapping of cartilage stiffness?. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2021, 34, 327-336.	2.0	4
7 5	SAR and temperature distributions in a database of realistic human models for 7 T cardiac imaging. NMR in Biomedicine, 2021, 34, e4525.	2.8	4
76	Advances in Magnetic Resonance Spectroscopy. PET Clinics, 2013, 8, 237-244.	3.0	3
77	Saturation-transfer effects and longitudinal relaxation times of ³¹ P metabolites in fibroglandular breast tissue at 7T. Magnetic Resonance in Medicine, 2016, 76, 402-407.	3.0	3
78	Improved fat suppression of the breast using discretized frequency shimming. Magnetic Resonance in Medicine, 2018, 79, 593-599.	3.0	3
79	Measurement of T1 and T2 relaxation times of the pancreas at 7ÂT using a multi-transmit system. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2019, 32, 703-708.	2.0	3
80	Proton metabolic mapping of the brain at 7ÂT using a twoâ€dimensional free induction decay–echoâ€planar spectroscopic imaging readout with lipid suppression. NMR in Biomedicine, 2022, 35, e4771.	2.8	3
81	Evaluation of the radiofrequency performance of a wide-bore $1.5 {\rm \hat{A}T}$ positron emission tomography/magnetic resonance imaging body coil for radiotherapy planning. Physics and Imaging in Radiation Oncology, 2021, 17, 13-19.	2.9	2
82	No need to detune transmitters in 32â€channel receiver arrays at 7 T. NMR in Biomedicine, 2021, 34, e4491.	2.8	1
83	Identifying the source of spurious signals caused by <scp> B ₀ </scp> inhomogeneities in singleâ€voxel <scp> ¹ H MRS </scp> . Magnetic Resonance in Medicine, 2022, , .	3.0	1