Yohay Carmel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5211546/publications.pdf Version: 2024-02-01

YOHAV CADMEL

#	Article	IF	CITATIONS
1	Seasonal fires shape the germinable soil seed bank community in eastern Mediterranean woodlands. Journal of Plant Ecology, 2022, 15, 13-25.	1.2	3
2	Economic and not ecological variables shape the sparing–sharing tradeâ€off in a mixed cropping landscape. Journal of Applied Ecology, 2022, 59, 779-790.	1.9	7
3	High resilience of the mycorrhizal community to prescribed seasonal burnings in eastern Mediterranean woodlands. Mycorrhiza, 2021, 31, 203-216.	1.3	8
4	Assessing climatic benefits from forestation potential in semi-arid lands. Environmental Research Letters, 2021, 16, 104039.	2.2	6
5	Can the intermediate disturbance hypothesis explain grazing–diversity relations at a global scale?. Oikos, 2020, 129, 493-502.	1.2	50
6	Recognizing animal personhood in compassionate conservation. Conservation Biology, 2020, 34, 1097-1106.	2.4	58
7	Experimental evidence of multiple ecosystem services and disservices provided by ecological intensification in Mediterranean agroâ€ecosystems. Journal of Applied Ecology, 2020, 57, 2041-2053.	1.9	12
8	A global meta-analysis of grazing effects on plant richness. Agriculture, Ecosystems and Environment, 2020, 302, 107072.	2.5	53
9	Operationalizing evolutionary transitions in individuality. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192805.	1.2	12
10	Cost-effectiveness of uncultivated field-margins and semi-natural patches in Mediterranean areas: A multi-taxa, landscape scale approach. Biological Conservation, 2019, 240, 108262.	1.9	10
11	Fire season modifies the perennial plant community composition through a differential effect on obligate seeders in eastern Mediterranean woodlands. Applied Vegetation Science, 2019, 22, 115-126.	0.9	9
12	Incorporating principles of reconciliation ecology to achieve ecosystem-based marine spatial planning. Ecological Engineering, 2018, 120, 595-600.	1.6	7
13	Conservation planning under uncertainty in urban development and vegetation dynamics. PLoS ONE, 2018, 13, e0195429.	1.1	4
14	Using ecological modelling in marine spatial planning to enhance ecosystem-based management. Marine Policy, 2018, 95, 14-23.	1.5	14
15	Contributions of marine infrastructures to marine planning and protected area networking. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 830-839.	0.9	7
16	To mix or not to mix the sources of relocated plants? The case of the endangered Iris lortetii. Journal for Nature Conservation, 2018, 45, 41-47.	0.8	6
17	High-resolution species-distribution model based on systematic sampling and indirect observations. Biodiversity and Conservation, 2017, 26, 421-437.	1.2	25
18	Using exclusion rate to unify niche and neutral perspectives on coexistence. Oikos, 2017, 126, 1451-1458.	1.2	28

YOHAY CARMEL

#	Article	IF	CITATIONS
19	Intraguild Predation Dynamics in a Lake Ecosystem Based on a Coupled Hydrodynamic-Ecological Model: The Example of Lake Kinneret (Israel). Biology, 2017, 6, 22.	1.3	11
20	Expanded view of ecosystem stability: A grazed grassland case study. PLoS ONE, 2017, 12, e0178235.	1.1	0
21	Quantifying the value of user-level data cleaning for big data: A case study using mammal distribution models. Ecological Informatics, 2016, 34, 139-145.	2.3	51
22	Landscape patterns of development under two alternative scenarios: Implications for conservation. Land Use Policy, 2016, 54, 221-234.	2.5	15
23	The elusive nature of fluorescent organic matter in Lake Kinneret, Israel. Hydrobiologia, 2016, 763, 53-68.	1.0	2
24	Bird and mammal species composition in distinct geographic regions and their relationships with environmental factors across multiple spatial scales. Ecology and Evolution, 2014, 4, 1963-1971.	0.8	12
25	Environmental heterogeneity affects the location of modelled communities along the niche–neutrality continuum. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133249.	1.2	23
26	Can agro-ecosystems efficiently complement protected area networks?. Biological Conservation, 2014, 169, 158-166.	1.9	21
27	Characterizing wild ass pathways using a non-invasive approach: applying least-cost path modelling to guide field surveys and a model selection analysis. Landscape Ecology, 2013, 28, 1465-1478.	1.9	12
28	Irrigation as an important factor in species distribution models. Basic and Applied Ecology, 2013, 14, 651-658.	1.2	5
29	Identification of 100 fundamental ecological questions. Journal of Ecology, 2013, 101, 58-67.	1.9	605
30	A multiscale analysis of herbaceous species richness in a Mediterranean ecosystem. Journal of Plant Ecology, 2013, 6, 113-121.	1.2	7
31	Trends in Ecological Research during the Last Three Decades – A Systematic Review. PLoS ONE, 2013, 8, e59813.	1.1	62
32	Automated segmentation of vegetation structure units in a Mediterranean landscape. International Journal of Remote Sensing, 2012, 33, 346-364.	1.3	25
33	Woody vegetation patch types affect herbaceous species richness and composition in a Mediterranean ecosystem. Community Ecology, 2012, 13, 72-81.	O.5	26
34	Post-fire analysis of pre-fire mapping of fire-risk: A recent case study from Mt. Carmel (Israel). Forest Ecology and Management, 2011, 262, 1184-1188.	1.4	43
35	Evaluation of five clustering algorithms for biodiversity surrogates. Ecological Indicators, 2011, 11, 896-901.	2.6	2
36	Presenceâ€only versus presence–absence data in species composition determinant analyses. Diversity and Distributions, 2011, 17, 474-479.	1.9	19

YOHAY CARMEL

#	Article	IF	CITATIONS
37	Differential effects of goat browsing on herbaceous plant community in a two-phase mosaic. Plant Ecology, 2011, 212, 1643-1653.	0.7	16
38	Sensitivity analysis for complex ecological models – A new approach. Environmental Modelling and Software, 2011, 26, 124-134.	1.9	109
39	Multiscale Analyses of Mammal Species Composition – Environment Relationship in the Contiguous USA. PLoS ONE, 2011, 6, e25440.	1.1	12
40	Spatial analysis of air pollution and cancer incidence rates in Haifa Bay, Israel. Science of the Total Environment, 2010, 408, 4429-4439.	3.9	50
41	Monitoring post-wildfire vegetation response with remotely sensed time-series data in Spain, USA and Israel. International Journal of Wildland Fire, 2010, 19, 75.	1.0	106
42	Distribution of threatened-unprotected vertebrates as a basis for conservation planning. Israel Journal of Ecology and Evolution, 2009, 55, 117-132.	0.2	7
43	The effects of disturbance based management on the dynamics of Mediterranean vegetation: A hierarchical and spatially explicit modeling approach. Ecological Modelling, 2009, 220, 2525-2535.	1.2	14
44	Uses and Misuses of Multicriteria Decision Analysis (MCDA) in Environmental Decision Making. Risk Analysis, 2009, 29, 26-33.	1.5	131
45	Assessing fire risk using Monte Carlo simulations of fire spread. Forest Ecology and Management, 2009, 257, 370-377.	1.4	130
46	Quantifying the effect of grazing and shrub-clearing on small scale spatial pattern of vegetation. Landscape Ecology, 2008, 23, 327-339.	1.9	27
47	Incorporating output variance in local sensitivity analysis for stochastic models. Ecological Modelling, 2008, 213, 463-467.	1.2	28
48	Growth, resource storage, and adaptation to drought in California and eastern Mediterranean oak seedlings. Canadian Journal of Forest Research, 2008, 38, 331-342.	0.8	14
49	Analyzing Spatially Distributed Binary Data Using Independent-Block Estimating Equations. Biometrics, 2007, 63, 892-900.	0.8	11
50	Assessment of temporal changes in aboveground forest tree biomass using aerial photographs and allometric equations. Canadian Journal of Forest Research, 2006, 36, 2585-2594.	0.8	27
51	Comparing Environmental and Biological Surrogates for Biodiversity at a Local Scale. Israel Journal of Ecology and Evolution, 2006, 52, 11-27.	0.2	24
52	Planning for robust reserve networks using uncertainty analysis. Ecological Modelling, 2006, 199, 115-124.	1.2	95
53	Assessment of an "Energy Tower―potential in Australia using a mathematical model and CIS. Solar Energy, 2005, 78, 799-808.	2.9	22
54	Mapping spatio-temporal variables: The impact of the time-averaging window width on the spatial accuracy. Atmospheric Environment, 2005, 39, 3611-3619.	1.9	14

YOHAY CARMEL

#	Article	IF	CITATIONS
55	Infoâ€Gap Robustâ€Satisficing Model of Foraging Behavior: Do Foragers Optimize or Satisfice?. American Naturalist, 2005, 166, 633-641.	1.0	48
56	Empirical Method for Topographic Correction in Aerial Photographs. IEEE Geoscience and Remote Sensing Letters, 2005, 2, 211-214.	1.4	13
57	Comparing landscape scale vegetation dynamics following recent disturbance in climatically similar sites in California and the Mediterranean basin. Landscape Ecology, 2004, 19, 573-590.	1.9	26
58	Characterizing Location and Classification Error Patterns in Time-Series Thematic Maps. IEEE Geoscience and Remote Sensing Letters, 2004, 1, 11-14.	1.4	10
59	Performance of a spatio-temporal error model for raster datasets under complex error patterns. International Journal of Remote Sensing, 2004, 25, 5283-5296.	1.3	16
60	Controlling Data Uncertainty via Aggregation in Remotely Sensed Data. IEEE Geoscience and Remote Sensing Letters, 2004, 1, 39-41.	1.4	12
61	The Evolution of the Cultural Mediterranean Landscape in Israel as Affected by Fire, Grazing, and Human Activities. , 2004, , 337-409.		22
62	Aggregation as a Means of Increasing Thematic Map Accuracy. , 2004, , 29-38.		0
63	SPATIOTEMPORAL PREDICTIVE MODELS OF MEDITERRANEAN VEGETATION DYNAMICS. , 2001, 11, 268-280.		31
64	Title is missing!. , 1999, 145, 243-254.		137
65	Computerized classification of Mediterranean vegetation using panchromatic aerial photographs. Journal of Vegetation Science, 1998, 9, 445-454.	1.1	59
66	Habitat use by bats in a Mediterranean ecosystem in Israel—Conservation implications. Biological Conservation, 1998, 84, 245-250.	1.9	35