
Marian Zaborski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5211383/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer-based sensors: A review. Polymer Testing, 2018, 67, 342-348.	2.3	137
2	Characteristics of curcumin using cyclic voltammetry, UV–vis, fluorescence and thermogravimetric analysis. Electrochimica Acta, 2013, 107, 441-447.	2.6	82
3	Electrooxidation of flavonoids at platinum electrode studied by cyclic voltammetry. Food Chemistry, 2011, 127, 699-704.	4.2	79
4	Characteristics of compounds in hops using cyclic voltammetry, UV–VIS, FTIR and GC–MS analysis. Food Chemistry, 2014, 156, 353-361.	4.2	74
5	Serum albumins have five sites for binding of cationic dendrimers. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 946-951.	1.1	70
6	Electrooxidation of morin hydrate at a Pt electrode studied by cyclic voltammetry. Food Chemistry, 2014, 148, 18-23.	4.2	70
7	lonic elastomers based on carboxylated nitrile rubber (XNBR) and magnesium aluminum layered double hydroxide (hydrotalcite). EXPRESS Polymer Letters, 2014, 8, 374-386.	1.1	64
8	The effect of zinc oxide nanoparticle morphology on activity in crosslinking of carboxylated nitrile elastomer. EXPRESS Polymer Letters, 2009, 3, 542-552.	1.1	62
9	Compatibility of fibroin/chitosan and fibroin/cellulose blends studied by thermal analysis. Journal of Thermal Analysis and Calorimetry, 2007, 89, 887-891.	2.0	48
10	Comparative study of the surface hydroxyl groups of fumed and precipitated silicas. I. Grafting and chemical characterization. Langmuir, 1989, 5, 447-451.	1.6	46
11	The potential of quercetin as an effective natural antioxidant and indicator for packaging materials. Food Packaging and Shelf Life, 2018, 16, 51-58.	3.3	46
12	Chrome-tanned leather shavings as a filler of butadiene–acrylonitrile rubber. Journal of Hazardous Materials, 2007, 141, 252-257.	6.5	45
13	Influence of hydroxyl substitution on flavanone antioxidants properties. Food Chemistry, 2017, 215, 501-507.	4.2	42
14	Effect of ionic liquids and surfactants on zinc oxide nanoparticle activity in crosslinking of acrylonitrile butadiene elastomer. Journal of Applied Polymer Science, 2010, 116, 155-164.	1.3	40
15	Activity of fillers in elastomer networks of different structure. Macromolecular Symposia, 2003, 194, 87-100.	0.4	38
16	Antioxidant and Antiradical Properties of Green Tea Extract Compounds. International Journal of Electrochemical Science, 2017, 12, 6600-6610.	0.5	38
17	lonic Liquids as Vulcanization Accelerators. Industrial & Engineering Chemistry Research, 2010, 49, 5012-5017.	1.8	36
18	Carbosilane Dendrimers are a Non-Viral Delivery System for Antisense Oligonucleotides: Characterization of Dendriplexes. Journal of Biomedical Nanotechnology, 2012, 8, 57-73.	0.5	34

#	Article	IF	CITATIONS
19	Carbosilane dendrimers NN8 and NN16 form a stable complex with siGAG1. Colloids and Surfaces B: Biointerfaces, 2011, 83, 388-391.	2.5	33
20	Characterization of complexes formed by polypropylene imine dendrimers and anti-HIV oligonucleotides. Colloids and Surfaces B: Biointerfaces, 2011, 83, 360-366.	2.5	33
21	Zinc chelates as new activators for sulphur vulcanization of acrylonitrile-butadiene elastomer. EXPRESS Polymer Letters, 2009, 3, 256-266.	1.1	32
22	Surface properties of zinc oxide nanoparticles studied by inverse gas chromatography. Journal of Chromatography A, 2009, 1216, 5284-5291.	1.8	32
23	The impact of imidazolium ionic liquids on the properties of nitrile rubber composites. European Polymer Journal, 2014, 53, 139-146.	2.6	32
24	Novel Ionic Liquids as Accelerators for the Sulfur Vulcanization of Butadiene–Styrene Elastomer Composites. Industrial & Engineering Chemistry Research, 2013, 52, 8410-8415.	1.8	30
25	Adsorption of curatives and activity of silica toward elastomers. Macromolecular Symposia, 2003, 194, 269-276.	0.4	29
26	lonic liquids as coagents for sulfur vulcanization of butadiene–styrene elastomer filled with carbon black. Polymer Bulletin, 2018, 75, 4499-4514.	1.7	29
27	Characterization and properties of new color-tunable hybrid pigments based on layered double hydroxides (LDH) and 1,2-dihydroxyanthraquinone dye. Journal of Industrial and Engineering Chemistry, 2019, 70, 427-438.	2.9	29
28	Thermal properties of 1-alkyl-3-methylpyridinium halide-based ionic liquids. Thermochimica Acta, 2013, 568, 185-188.	1.2	28
29	Use of carbon black as a reinforcing nano-filler in conductivity-reversible elastomer composites. Polymer Testing, 2020, 81, 106222.	2.3	27
30	Interaction between PAMAM 4.5 dendrimer, cadmium and bovine serum albumin: A study using equilibrium dialysis, isothermal titration calorimetry, zeta-potential and fluorescence. Colloids and Surfaces B: Biointerfaces, 2007, 58, 286-289.	2.5	26
31	Synthesis and dissolving power of 1-Alkyl-3-methylpyridinium-based ionic liquids. Russian Journal of General Chemistry, 2012, 82, 1994-1998.	0.3	26
32	Effect of imidazolium ionic liquid type on the properties of nitrile rubber composites. Polymer International, 2013, 62, 1575-1582.	1.6	26
33	Effect of ionic liquids on the dispersion of zinc oxide and silica nanoparticles, vulcanisation behaviour and properties of NBR composites. EXPRESS Polymer Letters, 2014, 8, 932-940.	1.1	26
34	Effects of unmodified layered double hydroxides MgAl-LDHs with various structures on the properties of filled carboxylated acrylonitrile–butadiene rubber XNBR. European Polymer Journal, 2014, 60, 172-185.	2.6	26
35	Keratin as a filler for carboxylated acrylonitrileâ€butadiene rubber XNBR. Journal of Applied Polymer Science, 2007, 106, 3674-3687.	1.3	25
36	Characterisation of the antioxidant acitivity of riboflavin in an elastomeric composite. Comptes Rendus Chimie, 2012, 15, 524-529.	0.2	24

#	Article	IF	CITATIONS
37	Effect of different carbon fillers on the properties of nitrile rubber composites. Composite Interfaces, 2019, 26, 729-750.	1.3	24

38 Impact of PAMAM G2 and G6 dendrimers on bovine serum albumin (fatty acids free and loaded with) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

39	Thermal analysis and mechanical methods applied to studying properties of SBR compounds containing ionic liquids. Polymer Testing, 2017, 61, 349-363.	2.3	21
40	Studies of molecular dynamics of carboxylated acrylonitrile-butadiene rubber composites containing in situ synthesized silica particles. European Polymer Journal, 2009, 45, 3317-3325.	2.6	20
41	Specific features of cellulose and chitin dissolution in ionic liquids of varied structure and the structural organization of regenerated polysaccharides. Russian Journal of Applied Chemistry, 2012, 85, 1718-1725.	0.1	20
42	Antioxidant activity determination in Sencha and Gun Powder green tea extracts with the application of voltammetry and UV-VIS spectrophotometry. Comptes Rendus Chimie, 2012, 15, 424-427.	0.2	20
43	Characterization of Ethylene–propylene Composites Filled with Perlite and Vermiculite Minerals: Mechanical, Barrier, and Flammability Properties. Materials, 2020, 13, 585.	1.3	19
44	Biodegradable Protein-Containing Elastomeric Vulcanizates. Rubber Chemistry and Technology, 2005, 78, 868-878.	0.6	18
45	Effect of carbon nanofibers on mechanical and electrical behaviors of acrylonitrileâ€butadiene rubber composites. Polymers for Advanced Technologies, 2018, 29, 1661-1669.	1.6	18
46	Universal approach of cellulose fibres chemical modification result analysis via commonly used techniques. Polymer Bulletin, 2019, 76, 2147-2162.	1.7	18
47	Characteristics of Hybrid Pigments Made from Alizarin Dye on a Mixed Oxide Host. Materials, 2019, 12, 360.	1.3	18
48	The interaction between PAMAM G3.5 dendrimer, Cd2+, dendrimer–Cd2+ complexes and human serum albumin. Colloids and Surfaces B: Biointerfaces, 2009, 69, 95-98.	2.5	17
49	Derivatives of flavonoides as anti-ageing substances in elastomers. Comptes Rendus Chimie, 2011, 14, 483-488.	0.2	17
50	Properties of Carboxylated Nitrile Rubber/Hydrotalcite Composites Containing Imidazolium Ionic Liquids. Macromolecular Symposia, 2014, 341, 7-17.	0.4	17
51	Physico-mechanical and thermal properties of epoxidized natural rubber/polylactide (ENR/PLA) composites reinforced with lignocellulose. Journal of Thermal Analysis and Calorimetry, 2016, 125, 1467-1476.	2.0	17
52	Characterization and Structure–Property Relationships of Organic–Inorganic Hybrid Composites Based on Aluminum–Magnesium Hydroxycarbonate and Azo Chromophore. Molecules, 2019, 24, 880.	1.7	17
53	Modification of precipitated calcium carbonate to improve its activity toward elastomers. Macromolecular Symposia, 2003, 194, 287-294.	0.4	16
54	Hydroxyapatite: An Environmentally Friendly Filler for Elastomers. Molecular Crystals and Liquid Crystals, 2008, 483, 172-178.	0.4	16

#	Article	lF	CITATIONS
55	Eco-friendly elastomeric composites containing Sencha and Gun Powder green tea extracts. Comptes Rendus Chimie, 2012, 15, 331-335.	0.2	16
56	Reinforcement of carboxylated acrylonitrile-butadiene rubber (XNBR) with graphene nanoplatelets with varying surface area. Journal of Polymer Engineering, 2014, 34, 883-893.	0.6	16
57	ENR/PCL Polymer biocomposites from renewable resources. Comptes Rendus Chimie, 2014, 17, 944-951.	0.2	16
58	Characteristics of juglone (5-hydroxy-1,4,-naphthoquinone) using voltammetry and spectrophotometric methods. Food Chemistry, 2019, 301, 125279.	4.2	16
59	Insight into the formation mechanism of azo dye-based hybrid colorant: Physico-chemical properties and potential applications. Dyes and Pigments, 2019, 167, 236-244.	2.0	15
60	POSS as promoters of self-healing process in silicone composites. Polymer Bulletin, 2019, 76, 3387-3402.	1.7	15
61	Highly Organized Self-Assembled Dendriplexes Based on Poly(propylene imine) Glycodendrimer and Anti-HIV Oligodeoxynucleotides. Current Medicinal Chemistry, 2012, 19, 4708-4719.	1.2	14
62	Optimization of the heavy metal (Bi–W–Gd–Sb) concentrations in the elastomeric shields for computer tomography (CT). Journal of Radioanalytical and Nuclear Chemistry, 2014, 300, 385-391.	0.7	14
63	Effect of Zinc Oxide Modified Silica Particles on the Molecular Dynamics of Carboxylated Acrylonitrile-Butadiene Rubber Composites. Polymers, 2017, 9, 645.	2.0	14
64	Morin hydrate as pro-ecological antioxidant and pigment for polyolefin polymers. Comptes Rendus Chimie, 2013, 16, 990-996.	0.2	13
65	Mineral oxides and layered minerals in combination with itaconic acid as coagents for peroxide crosslinking of hydrogenated acrylonitrile-butadiene elastomer. Comptes Rendus Chimie, 2012, 15, 414-423.	0.2	12
66	Dodecyl gallate as a pro-ecological antioxidant for food packing materials. Comptes Rendus Chimie, 2014, 17, 1116-1127.	0.2	12
67	Aluminum-Magnesium Hydroxycarbonate/Azo Dye Hybrids as Novel Multifunctional Colorants for Elastomer Composites. Polymers, 2019, 11, 43.	2.0	12
68	Surface energy of vulcanizates differing in structure and density of space network. Polimery, 1991, 36, 109-111.	0.4	12
69	Investigations of Nitrile Rubber Composites Containing Imidazolium Ionic Liquids. Macromolecular Symposia, 2014, 341, 18-25.	0.4	11
70	Study on Weather Aging of Nitrile Rubber Composites Containing Imidazolium Ionic Liquids. Macromolecular Symposia, 2014, 342, 25-34.	0.4	11
71	Ionic Liquids Applied to Improve the Dispersion of Coagent Particles in an Elastomer. Journal of Composites, 2013, 2013, 1-8.	0.8	10
72	Carminic Acid Stabilized with Aluminum-Magnesium Hydroxycarbonate as New Colorant Reducing Flammability of Polymer Composites. Molecules, 2019, 24, 560.	1.7	10

#	Article	IF	CITATIONS
73	Impact of organic-inorganic color additive on the properties of ethylene-norbornene copolymer. Polymer Testing, 2020, 82, 106290.	2.3	10
74	Antioxidant properties of rose extract (Rosa villosa L.) measured using electrochemical and UV/Vis spectrophotometric methods. International Journal of Electrochemical Science, 2017, 12, 10994-11005.	0.5	9
75	Sol-gel process of alkoxysilanes in an elastomer medium. Polymer International, 2005, 54, 1119-1125.	1.6	8
76	Intercalated Montmorillonites as Fillers for Acrylonitrile-Butadiene Rubber. Rubber Chemistry and Technology, 2007, 80, 279-295.	0.6	8
77	Smart Materials Based on Magnetorheological Composites. Materials Science Forum, 0, 714, 167-173.	0.3	8
78	Surface properties of calcium and magnesium oxide nanopowders grafted with unsaturated carboxylic acids studied with inverse gas chromatography. Journal of Chromatography A, 2012, 1257, 141-148.	1.8	8
79	Conformational Transitions of Silk Fibroin in Solutions under the Action of Ultrasound. Russian Journal of Applied Chemistry, 2018, 91, 1193-1197.	0.1	8
80	New organic-inorganic hybrids as multifunctional additives to improve ethylene-norbornene (EN) composite stability. Polymer Degradation and Stability, 2019, 160, 110-119.	2.7	8
81	Synthesis of organofunctional silanes with sterically hindered substituents at silicon atoms. Applied Organometallic Chemistry, 2001, 15, 649-657.	1.7	7
82	Generation of the additional fluorescence radiation in the elastomeric shields used in computer tomography (CT). Journal of Radioanalytical and Nuclear Chemistry, 2013, 298, 1913-1921.	0.7	7
83	Controlled degradation of biocomposites ENR/PCL containing natural antioxidants. Comptes Rendus Chimie, 2014, 17, 1128-1135.	0.2	7
84	Antioxidant Potential of Hydroxycinnamic Acids in Advanced Oxidation Processes. International Journal of Electrochemical Science, 2016, 11, 8848-8860.	0.5	7
85	Effect of <i>in situ</i> silanization of multiwalled carbon nanotubes on the properties of NBR/MWCNT-OH composites. Polymer-Plastics Technology and Materials, 2019, 58, 1327-1341.	0.6	7
86	Curing kinetics and ionic interactions in layered double hydroxides–nitrile rubber Mg–Al-LDHs–XNBR composites. Polymer Bulletin, 2021, 78, 3199-3226.	1.7	7
87	Properties of carboxylated acrylonitrile/butadiene rubber containing in situ synthesized silica fillers. Polimery, 2002, 47, 643-648.	0.4	7
88	POSS compounds as modifiers and additives for elastomeric composites. Polimery, 2013, 58, 772-782.	0.4	7
89	The potential of juglone as natural dye and indicator for biodegradable polyesters. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 0, , 146442071880427.	0.7	6
90	Elastomers Containing Fillers with Magnetic Properties. Solid State Phenomena, 0, 154, 121-126.	0.3	5

#	Article	IF	CITATIONS
91	New Coagents in Cross-linking of Hydrogenated Butadiene–Acrylonitrile Elastomer Based on Nanostructured Zinc Oxide. Composite Interfaces, 2009, 16, 131-141.	1.3	5
92	Improving the Ionic Conductivity of Carboxylated Nitrile Rubber/LDH Composites by Adding Imidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids. Macromolecular Symposia, 2014, 342, 35-45.	0.4	5
93	Modified and Unmodified Zinc Oxide as Coagent in Elastomer Compounds. Polish Journal of Chemical Technology, 2014, 16, 63-68.	0.3	5
94	Effect of thermooxidative and photooxidative ageing processes on mechanical properties of magnetorheological elastomer composites. Polimery, 2015, 60, 264-271.	0.4	5
95	Characteristic of natural rubber composites absorbing X-radiation. Composite Interfaces, 2012, 19, 433-439.	1.3	4
96	Nanosized Mineral Oxides Modified with Unsaturated Acids as Coagents for Peroxide Vulcanization. Soft Materials, 2013, 11, 22-31.	0.8	4
97	The properties of ethylene–propylene elastomers obtained with the use of a new cross-linking substance. Journal of Thermal Analysis and Calorimetry, 2016, 125, 1105-1113.	2.0	4
98	Novel dyed ethylene-norbornene composites with enhanced aging resistance. Polymer Degradation and Stability, 2016, 123, 137-145.	2.7	4
99	Effects of solar irradiation on the properties of ethylene-norbornene composites containing solvent dyes. Polymer Testing, 2017, 62, 392-401.	2.3	4
100	A Comparative Study of Solutions of Silk Fibroin in 1-Butyl-3-methylimidazolium Chloride and Acetate. Russian Journal of Applied Chemistry, 2018, 91, 647-652.	0.1	4
101	Properties of ZnO/SiO2 cross-linked butadiene-acrylonitrile rubber. Polimery, 2002, 47, 339-346.	0.4	4
102	The properties of elastomers obtained with the use of carboxylated acrylonitrile-butadiene rubber and new crosslinking substances. Polimery, 2016, 61, 31-38.	0.4	4
103	Dielectric investigation of organic–inorganic hybrid based on titanium oxocluster-crosslinked elastomer. Journal of Non-Crystalline Solids, 2009, 355, 496-500.	1.5	3
104	Experimental investigation on activity of cumene hydroperoxide and selected ionic liquids in butadiene rubber vulcanization. Advances in Polymer Technology, 2018, 37, 3432-3437.	0.8	3
105	The structure and properties of collagen and gelatin. Polimery, 2000, 45, 10-21.	0.4	3
106	Characterization of physicochemical properties of the inorganic components in the "core-shell―structured polymer mixtures. Part I. The precipitated silica systems. Polimery, 2002, 47, 95-103.	0.4	3
107	The influence of cellular T8 oligosilsesquioxanes on mechanical properties of silicone rubber. Polimery, 2010, 55, 208-214.	0.4	3
108	Influence of flavanone on the stabilization of ethylene-propylene elastomer. Polimery, 2011, 56, 558-563.	0.4	3

#	Article	IF	CITATIONS
109	Magnetorheological materials based on ethylene-octene elastomer. Polimery, 2014, 59, 825-833.	0.4	3
110	Effect of ionic liquids on the selected properties of magnetic composites filled with micro-sized iron oxide (Fe3O4). Polimery, 2016, 61, 117-124.	0.4	3
111	Properties of POSS/HNBR Elastomer Nanocomposites. Materials Science Forum, 0, 714, 175-181.	0.3	2
112	The Effect of Carbon Fillers on Elastomer Composite Properties. Materials Science Forum, 0, 714, 159-166.	0.3	2
113	Pigment and Dye Modified Fillers as Elastomeric Additives. , 2012, , .		2
114	Ionic Liquids Applied to Improve the Dispersion of Solids in Elastomers. , 2015, , .		2
115	Thermal and surface properties of fibers made from fiber-forming gelatin-g-polyacrylonitrile grafted copolymers. Polimery, 2000, 45, 172-177.	0.4	2
116	Characterization of physicochemical properties of the inorganic components in the core-shell-structured in polymer mixtures. Part II. The systems obtain pyrogenic silica. Polimery, 2002, 47, 201-207.	0.4	2
117	Hydrophilic-hydrophobic rubber composites with increased susceptibility to biodegradation. Polimery, 2006, 51, 534-538.	0.4	2
118	The properties of SiO2/dye composite pigments and their applications for silicone rubber. Polimery, 2010, 55, 215-221.	0.4	2
119	Elastomer composites with proecological additives Kompozyty elastomerowe z dodatkami proekologicznymi. Przemysl Chemiczny, 2017, 1, 167-172.	0.0	2
120	New type of inorganic filler with a core-shell structure. Macromolecular Symposia, 2003, 194, 313-320.	0.4	1
121	Synthesis and modification of fillers with derivatives of benzoic acids. Macromolecular Symposia, 2003, 194, 329-334.	0.4	1
122	Synthesis of silica in elastomer's matrix. Macromolecular Symposia, 2003, 194, 321-328.	0.4	1
123	Nanostructured Metal Oxide and Unsaturated Acid as a New Co-agent in Peroxide Cross-Linking of Hydrogenated Butadiene-Acrylonitrile Rubber. , 2011, , 147-149.		1
124	Modification of Hydroxyapatite with Polymer Brushes. Materials Science Forum, 0, 714, 291-295.	0.3	1
125	The Influence of Nanostructured Metal Oxides and Unsaturated Acids on Peroxide Cross-Linking of Ethylene-Octene Rubber. Materials Science Forum, 0, 714, 271-276.	0.3	1
126	Silsesquioxanes as Modifying Agents of Methylvinylsilicone Rubber. Materials Science Forum, 0, 714, 183-189.	0.3	1

#	Article	IF	CITATIONS
127	Elastomer Composites Containing Layered Fillers Modified with Ionic Liquids. Materials Science Forum, 0, 714, 73-78.	0.3	1
128	The Effect of Chemical Modification on Mechanical Properties of Carbon Black Filled Elastomer. , 2011, , 143-146.		1
129	The effect of zinc oxide on the properties of ethylene-propylene rubbers. Polimery, 2001, 46, 678-683.	0.4	1
130	New organic peroxides as the agents curing elastomers. Polimery, 2010, 55, 293-298.	0.4	1
131	The influence of surfactants and ionic liquids on the mechanical and magnetic properties of ethylene-propylene copolymers filled with micrometer and nanometer magnetite. Polimery, 2011, 56, 743-748.	0.4	1
132	Elastomer shields reducing x-radiation doses in computed tomography techniques. Polimery, 2013, 58, 519-523.	0.4	1
133	Elastomer composites containing ionic liquids. Polimery, 2015, 60, 501-507.	0.4	1
134	Surface modification of methylvinylsilicone rubber vulcanizates with polyhedral oligomeric silsesquioxanes functionalized using chloride groups (POSS-Cl). Polimery, 2016, 61, 272-278.	0.4	1
135	Magnetorheological Elastomers Containing Ionic Liquids. , 0, , .		1
136	Effect of Ionic Liquids on the Mechanical Properties of Methylvinylsilicone Rubber. , 2011, , 151-154.		0
137	Rubbers Reinforced by POSS. Springer Series on Polymer and Composite Materials, 2018, , 299-336.	0.5	0