
Xiang-Yu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5210724/publications.pdf Version: 2024-02-01

XIANG-YU WANG

#	Article	IF	CITATIONS
1	High-energy cosmic rays and neutrinos from semirelativistic hypernovae. Physical Review D, 2007, 76, .	4.7	100
2	KLEIN-NISHINA EFFECTS ON THE HIGH-ENERGY AFTERGLOW EMISSION OF GAMMA-RAY BURSTS. Astrophysical Journal, 2010, 712, 1232-1240.	4.5	74
3	Diffuse PeV neutrinos from EeV cosmic ray sources: Semirelativistic hypernova remnants in star-forming galaxies. Physical Review D, 2014, 89, .	4.7	62
4	THE FIRST DETECTION OF GeV EMISSION FROM AN ULTRALUMINOUS INFRARED GALAXY: Arp 220 AS SEEN WITH THE FERMI LARGE AREA TELESCOPE. Astrophysical Journal Letters, 2016, 821, L20.	8.3	61
5	Synchrotron Self-Compton Emission from External Shocks as the Origin of the Sub-TeV Emission in GRB 180720B and GRB 190114C. Astrophysical Journal, 2019, 884, 117.	4.5	59
6	MODELING THE BROADBAND EMISSION OF GRB 090902B. Astrophysical Journal, 2011, 730, 1.	4.5	58
7	A Two-zone Model for Blazar Emission: Implications for TXS 0506+056 and the Neutrino Event IceCube-170922A. Astrophysical Journal, 2019, 886, 23.	4.5	58
8	Hadronuclear interpretation of a high-energy neutrino event coincident with a blazar flare. Physical Review D, 2019, 99, .	4.7	56
9	INTERPRETATION OF THE UNPRECEDENTEDLY LONG-LIVED HIGH-ENERGY EMISSION OF GRB 130427A. Astrophysical Journal Letters, 2013, 773, L20.	8.3	55
10	Tidal disruption jets of supermassive black holes as hidden sources of cosmic rays: Explaining the IceCube TeV-PeV neutrinos. Physical Review D, 2016, 93, .	4.7	54
11	On the magnetization of gamma-ray burst blast waves. Monthly Notices of the Royal Astronomical Society, 2013, 435, 3009-3016.	4.4	53
12	DISCOVERY OF GeV EMISSION FROM THE DIRECTION OF THE LUMINOUS INFRARED GALAXY NGC 2146. Astrophysical Journal, 2014, 794, 26.	4.5	52
13	ON THE ORIGIN OF > 10 GeV PHOTONS IN GAMMA-RAY BURST AFTERGLOWS. Astrophysical Journal Letters, 2013, 771, L33.	8.3	46
14	Testing the Equivalence Principle and Lorentz Invariance with PeV Neutrinos from Blazar Flares. Physical Review Letters, 2016, 116, 151101.	7.8	46
15	DISCOVERY OF AN EXTRA HARD SPECTRAL COMPONENT IN THE HIGH-ENERGY AFTERGLOW EMISSION OF GRB 130427A. Astrophysical Journal Letters, 2013, 771, L13.	8.3	45
16	Nearby low-luminosity gamma-ray bursts as the sources of ultra-high-energy cosmic rays revisited. Monthly Notices of the Royal Astronomical Society, 2011, 418, 1382-1391.	4.4	31
17	GeV Observations of the Extended Pulsar Wind Nebulae Constrain the Pulsar Interpretations of the Cosmic-Ray Positron Excess. Astrophysical Journal, 2019, 878, 104.	4.5	29
18	Can Winds Driven by Active Galactic Nuclei Account for the Extragalactic Gamma-Ray and Neutrino Backgrounds?. Astrophysical Journal, 2018, 858, 9.	4.5	28

XIANG-YU WANG

#	Article	IF	CITATIONS
19	Constraining the Magnetic Field in the TeV Halo of Geminga with X-Ray Observations. Astrophysical Journal, 2019, 875, 149.	4.5	26
20	A Two-zone Blazar Radiation Model for "Orphan―Neutrino Flares. Astrophysical Journal, 2021, 906, 51.	4.5	26
21	Origin of Galactic Sub-PeV Diffuse Gamma-Ray Emission: Constraints from High-energy Neutrino Observations. Astrophysical Journal Letters, 2021, 914, L7.	8.3	25
22	Indication of a local fog of subankle ultrahigh energy cosmic rays. Physical Review D, 2016, 94, .	4.7	24
23	ENERGY SPECTRUM AND CHEMICAL COMPOSITION OF ULTRAHIGH ENERGY COSMIC RAYS FROM SEMI-RELATIVISTIC HYPERNOVAE. Astrophysical Journal, 2012, 746, 40.	4.5	22
24	Neutrino emission from an off-axis jet driven by the tidal disruption event AT2019dsg. Physical Review D, 2020, 102, .	4.7	22
25	On the Minimum Jet Power of TeV BL Lac Objects in the p–γ Model. Astrophysical Journal, 2019, 871, 81.	4.5	21
26	Detection of gamma-ray emission from the Coma cluster with Fermi Large Area Telescope and tentative evidence for an extended spatial structure. Physical Review D, 2018, 98, .	4.7	19
27	Evidence of AGN Activity in the Gamma-Ray Emission from Two Starburst Galaxies. Astrophysical Journal, 2019, 884, 91.	4.5	19
28	Revealing a peculiar supernova remnant G106.3+2.7 as a petaelectronvolt proton accelerator with X-ray observations. Innovation(China), 2021, 2, 100118.	9.1	17
29	GeV Î ³ -Ray Emission from M33 and Arp 299. Astrophysical Journal, 2020, 901, 158.	4.5	15
30	Magnetar Giant Flare Origin for GRB 200415A Inferred from a New Scaling Relation. Astrophysical Journal Letters, 2020, 903, L32.	8.3	15
31	Unified model for orphan and multiwavelength blazar flares. Physical Review D, 2022, 105, .	4.7	14
32	Exploring the Origin of Multiwavelength Activities of High-redshift Flat-spectrum Radio Quasar PKS 1502+106 during 2014–2018. Astrophysical Journal, 2019, 881, 125.	4.5	13
33	PeV Emission of the Crab Nebula: Constraints on the Proton Content in Pulsar Wind and Implications. Astrophysical Journal, 2021, 922, 221.	4.5	13
34	Fermi-LAT Detection of a GeV Afterglow from a Compact Stellar Merger. Astrophysical Journal Letters, 2022, 933, L22.	8.3	13
35	A Serendipitous Discovery of GeV Gamma-Ray Emission from Supernova 2004dj in a Survey of Nearby Star-forming Galaxies with Fermi-LAT. Astrophysical Journal Letters, 2020, 896, L33.	8.3	12
36	Discovery of a Spatially Extended GeV Source in the Vicinity of the TeV Halo Candidate 2HWC J1912+099: a TeV Halo or Supernova Remnant?. Astrophysical Journal, 2020, 889, 12.	4.5	12

XIANG-YU WANG

#	Article	IF	CITATIONS
37	Constraints on the intergalactic magnetic field from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>γ</mml:mi> -ray observations of GRB 190114C. Physical Review D, 2020, 101, .</mml:math 	4.7	11
38	Diffuse Î ³ -ray emission from the vicinity of young massive star cluster RSGC 1. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3405-3412.	4.4	11
39	Morphology of Gamma-Ray Halos around Middle-aged Pulsars: Influence of the Pulsar Proper Motion. Astrophysical Journal, 2021, 922, 130.	4.5	9
40	Do Afterglow Synchrotron Radiations Follow the L _{p,iso} –E _{p,z} –Γ ₀ Relation of Gamma-Ray Bursts? The Cases of GRBs 190114C, 130427A, and 180720B. Astrophysical Journal Letters, 2020, 903, L26.	8.3	8
41	UV-light and visible-light photochromism of inorganic–organic multilayer films based on polyoxometalate and poly(acrylamide). Colloid and Polymer Science, 2014, 292, 2883-2889.	2.1	7
42	Interpreting the Relation between the Gamma-Ray and Infrared Luminosities of Star-forming Galaxies. Astrophysical Journal, 2019, 874, 173.	4.5	7
43	Very-high-energy Emission and Cascade Radiation of Gamma-Ray Burst Afterglows: Homogeneous versus Wind External Media. Astrophysical Journal, 2021, 908, 225.	4.5	7
44	Comparative study of gamma-ray emission from molecular clouds and star-forming galaxies. Astronomy and Astrophysics, 2019, 621, A70.	5.1	6
45	Fermi-LAT Detection of Extended Gamma-Ray Emission in the Vicinity of SNR G045.7-00.4: Evidence of Escaping Cosmic Rays Interacting with the Surrounding Molecular Clouds. Astrophysical Journal, 2021, 923, 106.	4.5	6
46	Gamma-Ray Production in the Extended Halo of the Galaxy and Possible Implications for the Origin of Galactic Cosmic Rays. Astrophysical Journal, 2019, 871, 40.	4.5	4
47	Examining the Secondary Product Origin of Cosmic-Ray Positrons with the Latest AMS-02 Data. Astrophysical Journal, 2020, 895, 53.	4.5	4
48	Measuring the Mass of Missing Baryons in the Halo of Andromeda Galaxy with Gamma-Ray Observations. Astrophysical Journal, 2021, 911, 58.	4.5	4
49	Prospect of detecting X-ray haloes around middle-aged pulsars with eROSITA. Monthly Notices of the Royal Astronomical Society, 2022, 513, 2884-2892.	4.4	3
50	Acceleration of ultrahigh-energy cosmic rays in the early afterglows of gamma-ray bursts: Concurrence of jet dynamics and wave-particle interactions. Physical Review D, 2021, 104, .	4.7	2
51	Constraining the Baryon Loading Factor of AGN Jets: Implication from the Î ³ -Ray Emission of the Coma Cluster. Astrophysical Journal, 2022, 927, 33.	4.5	2
52	A semi-analytical solution to the forward–reverse shock hydrodynamics of the gamma-ray burst afterglow. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4887-4898.	4.4	2
53	KLEIN–NISHINA EFFECTS IN THE PROMPT AND EXTENDED HIGH-ENERGY GAMMA-RAY EMISSION OF GAMMA-RAY BURSTS. International Journal of Modern Physics D, 2011, 20, 2023-2027.	2.1	1
54	Constraining the redshift distribution of ultrahigh–energy–cosmic–ray sources by isotropic gamma-ray background. AIP Conference Proceedings, 2017, , .	0.4	1

#	Article	IF	CITATIONS
55	Enhanced Visible-active Performance of Bi2O3 Catalyst by ZnFe2O4 Combination. Journal of Advanced Oxidation Technologies, 2015, 18, .	0.5	о