D J Eden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5210717/publications.pdf

Version: 2024-02-01

236925 254184 2,104 73 25 43 citations h-index g-index papers 73 73 73 1268 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ATLASGAL – properties of a complete sample of Galactic clumps㔠Monthly Notices of the Royal Astronomical Society, 2018, 473, 1059-1102.	4.4	204
2	Hi-GAL, the <i>Herschel </i> infrared Galactic Plane Survey: photometric maps and compact source catalogues. Astronomy and Astrophysics, 2016, 591, A149.	5.1	189
3	The Hi-GAL compact source catalogue – I. The physical properties of the clumps in the inner Galaxy (â^'71\$_{.}^{circ}\$0 < â,," < 67\$_{.}^{circ}\$0). Monthly Notices of the Royal Astronomical Society, 2017, 471, 100-143.	4.4	125
4	ATLASGAL – properties of compact H ii regions and their natal clumpsã~ Monthly Notices of the Royal Astronomical Society, 2013, 435, 400-428.	4.4	108
5	Multitemperature mapping of dust structures throughout the Galactic Plane using the PPMAP tool with Herschel Hi-GAL data. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2730-2742.	4.4	87
6	CHIMPS: the ¹³ CO/C ¹⁸ O (<i>)I</i>)A=Â3Ââ†'Â2) Heterodyne Inner Milky Way Plane Surv Monthly Notices of the Royal Astronomical Society, 2016, 456, 2885-2899.	ey. 4:4	76
7	Star formation in Galactic spiral arms and the interarm regions. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1587-1595.	4.4	67
8	Star formation towards the Scutum tangent region and the effects of Galactic environment. Monthly Notices of the Royal Astronomical Society, 2012, 422, 3178-3188.	4.4	57
9	A Holistic Perspective on the Dynamics of G035.39-00.33: The Interplay between Gas and Magnetic Fields. Astrophysical Journal, 2018, 859, 151.	4.5	57
10	The SEDIGISM survey: First Data Release and overview of the Galactic structure. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3064-3082.	4.4	53
11	The TOP-SCOPE Survey of <i>Planck</i> Galactic Cold Clumps: Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17. Astrophysical Journal, Supplement Series, 2018, 234, 28.	7.7	50
12	The Hi-GAL compact source catalogue – II. The 360° catalogue of clump physical properties. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2742-2766.	4.4	45
13	The almost ubiquitous association of 6.7-GHz methanol masers with dustâ~ Monthly Notices of the Royal Astronomical Society, 2015, 446, 3461-3477.	4.4	43
14	The JCMT Plane Survey: early results from the \hat{a} , " $\hat{A}=\hat{A}30\hat{A}^{\circ}$ field. Monthly Notices of the Royal Astronomical Society, 2015, 453, 4265-4278.	4.4	42
15	Dust polarized emission observations of NGC 6334. Astronomy and Astrophysics, 2021, 647, A78.	5.1	41
16	The Hi-GAL catalogue of dusty filamentary structures in the Galactic plane. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5420-5456.	4.4	40
17	Magnetic Fields in the Infrared Dark Cloud G34.43+0.24. Astrophysical Journal, 2019, 883, 95.	4.5	38
18	The JCMT Plane Survey: first complete data release – emission maps and compact source catalogue. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2163-2183.	4.4	37

#	Article	IF	Citations
19	The MALATANG Survey: The L _{GAS} –L _{IR} Correlation on Sub-kiloparsec Scale in Six Nearby Star-forming Galaxies as Traced by HCN JÂ=Â4Â→Â3 and HCO ⁺ JÂ=Â4Â→Â3. Astrophy Journal, 2018, 860, 165.	sic al 5	35
20	The SEDIGISM survey: molecular clouds in the inner Galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3027-3049.	4.4	35
21	Star formation scales and efficiency in Galactic spiral arms. Monthly Notices of the Royal Astronomical Society, 2015, 452, 289-300.	4.4	34
22	The prevalence of star formation as a function of Galactocentric radius. Monthly Notices of the Royal Astronomical Society, 2016, 462, 3123-3129.	4.4	33
23	The RMS survey: ammonia mapping of the environment of massive young stellar objects. Monthly Notices of the Royal Astronomical Society, 2015, 452, 4029-4053.	4.4	27
24	Spatial distribution of star formation related to ionized regions throughout the inner Galactic plane. Astronomy and Astrophysics, 2017, 605, A35.	5.1	27
25	CHIMPS: physical properties of molecular clumps across the inner Galaxy. Astronomy and Astrophysics, 2019, 632, A58.	5.1	26
26	ATLASGAL – evolutionary trends in high-mass star formation. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3389-3407.	4.4	26
27	Dust spectrum and polarisation at 850 <i>\hat{l}/4</i> m in the massive IRDC G035.39-00.33. Astronomy and Astrophysics, 2018, 620, A26.	5.1	22
28	Planck Cold Clumps in the <i>î»</i> Orionis Complex. II. Environmental Effects on Core Formation. Astrophysical Journal, Supplement Series, 2018, 236, 51.	7.7	22
29	SCOPE: SCUBA-2 Continuum Observations of Pre-protostellar Evolution – survey description and compact source catalogue. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2895-2908.	4.4	22
30	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP). II. Survey Overview: A First Look at 1.3 mm Continuum Maps and Molecular Outflows. Astrophysical Journal, Supplement Series, 2020, 251, 20.	7.7	22
31	SEDIGISM-ATLASGAL: dense gas fraction and star formation efficiency across the Galactic disc. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3050-3063.	4.4	21
32	CHIMPS2: survey description and 12CO emission in the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5936-5951.	4.4	21
33	The JCMT BISTRO Survey: Revealing the Diverse Magnetic Field Morphologies in Taurus Dense Cores with Sensitive Submillimeter Polarimetry. Astrophysical Journal Letters, 2021, 912, L27.	8.3	21
34	<i>Herschel</i> and SCUBA-2 observations of dust emission in a sample of <i>Planck</i> cold clumps. Astronomy and Astrophysics, 2018, 612, A71.	5.1	20
35	Multi-scale analysis of the Monoceros OB 1 star-forming region. Astronomy and Astrophysics, 2019, 631, A3.	5.1	20
36	The Properties of Planck Galactic Cold Clumps in the L1495 Dark Cloud. Astrophysical Journal, 2018, 856, 141.	4.5	19

#	Article	IF	CITATIONS
37	The role of spiral arms in Milky Way star formation. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2361-2373.	4.4	18
38	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP). I. Detection of New Hot Corinos with the ACA. Astrophysical Journal, 2020, 898, 107.	4.5	18
39	The SEDIGISM survey: A search for molecular outflows. Astronomy and Astrophysics, 2022, 658, A160.	5.1	17
40	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): Detection of Extremely High-density Compact Structure of Prestellar Cores and Multiple Substructures Within. Astrophysical Journal Letters, 2021, 907, L15.	8.3	16
41	Observations of Magnetic Fields Surrounding LkHÎ \pm 101 Taken by the BISTRO Survey with JCMT-POL-2. Astrophysical Journal, 2021, 908, 10.	4.5	16
42	B-fields in Star-forming Region Observations (BISTRO): Magnetic Fields in the Filamentary Structures of Serpens Main. Astrophysical Journal, 2022, 926, 163.	4.5	16
43	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): A Hot Corino Survey toward Protostellar Cores in the Orion Cloud. Astrophysical Journal, 2022, 927, 218.	4.5	16
44	The JCMT BISTRO Survey: An 850/450 \hat{l} 4m Polarization Study of NGC 2071IR in Orion B. Astrophysical Journal, 2021, 918, 85.	4.5	13
45	Multi-scale analysis of the Monoceros OB 1 star-forming region. Astronomy and Astrophysics, 2019, 631, L1.	5.1	11
46	The TOP-SCOPE Survey of PGCCs: PMO and SCUBA-2 Observations of 64 PGCCs in the Second Galactic Quadrant. Astrophysical Journal, Supplement Series, 2018, 236, 49.	7.7	10
47	ATLASGAL – physical parameters of dust clumps associated with 6.7ÂGHz methanol masers. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	10
48	ATLASGAL – relationship between dense star-forming clumps and interstellar masers. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2744-2759.	4.4	10
49	The MALATANG survey: dense gas and star formation from high-transition HCN and HCO+ maps of NGC 253. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1276-1296.	4.4	9
50	The Turbulent Gas Structure in the Centers of NGCÂ253 and the Milky Way. Astrophysical Journal, 2020, 899, 158.	4. 5	9
51	The SEDIGISM survey: The influence of spiral arms on the molecular gas distribution of the inner Milky Way. Astronomy and Astrophysics, 2022, 658, A54.	5.1	9
52	Extreme star formation in the Milky Way: luminosity distributions of young stellar objects in W49A and W51. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3369-3382.	4.4	8
53	Source clustering in the Hi-GAL survey determined using a minimum spanning tree method. Astronomy and Astrophysics, 2017, 597, A114.	5.1	7
54	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): Deriving Inclination Angle and Velocity of the Protostellar Jets from Their SiO Knots. Astrophysical Journal Letters, 2022, 931, L5.	8.3	7

#	Article	IF	Citations
55	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): Detection of a Dense SiO Jet in the Evolved Protostellar Phase. Astrophysical Journal, 2022, 925, 11.	4.5	6
56	The SEDIGISM survey: Molecular cloud morphology. Astronomy and Astrophysics, 2022, 663, A56.	5.1	6
57	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): Evidence for a Molecular Jet Launched at an Unprecedented Early Phase of Protostellar Evolution. Astrophysical Journal, 2022, 931, 130.	4.5	6
58	The RMS survey: Ammonia mapping of the environment of young massive stellar objects – llâ~ Monthly Notices of the Royal Astronomical Society, 2019, 483, 3146-3167.	4.4	5
59	Star formation in IRDC G31.97+0.07. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3334-3351.	4.4	5
60	Molecular Cloud Cores with High Deuterium Fractions: Nobeyama Mapping Survey. Astrophysical Journal, Supplement Series, 2021, 256, 25.	7.7	5
61	The HASHTAG Project: The First Submillimeter Images of the Andromeda Galaxy from the Ground. Astrophysical Journal, Supplement Series, 2021, 257, 52.	7.7	5
62	Estimating column density from ammonia $(1,1)$ emission in star-forming regions. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1160-1165.	4.4	4
63	Planck Galactic Cold Clumps at High Galactic Latitude—a Study with CO Lines. Astrophysical Journal, 2021, 920, 103.	4.5	4
64	Characteristic scale of star formation $\hat{a}\in$ I. Clump formation efficiency on local scales. Monthly Notices of the Royal Astronomical Society, 2020, 500, 191-210.	4.4	4
65	Ammonia Emission in Various Star-forming Environments: A Pilot Study of Planck Galactic Cold Clumps. Astrophysical Journal, Supplement Series, 2022, 258, 17.	7.7	4
66	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): How Do Dense Core Properties Affect the Multiplicity of Protostars?. Astrophysical Journal, 2022, 931, 158.	4.5	4
67	The correlation of dust and gas emission in star-forming environments. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1730-1752.	4.4	3
68	The HASHTAG project I. A survey of CO(3â€"2) emission from the star forming disc of M31. Monthly Notices of the Royal Astronomical Society, 2020, 492, 195-209.	4.4	3
69	Characterization of dense <i>Planck</i> clumps observed with <i>Herschel</i> and SCUBA-2. Astronomy and Astrophysics, 2021, 654, A123.	5.1	3
70	Solenoidal turbulent modes and star formation efficiency in Galactic plane molecular clouds. Monthly Notices of the Royal Astronomical Society, 2022, 515, 271-285.	4.4	3
71	Nobeyama Survey of Inward Motions toward Cores in Orion Identified by SCUBA-2. Astrophysical Journal, 2022, 931, 33.	4.5	2
72	The TOP-SCOPE survey of Planck Galactic Cold Clumps: The 200 brightest compact sources of Planck. Proceedings of the International Astronomical Union, 2018, 14, 373-374.	0.0	0

#	Article	IF	CITATIONS
73	Submillimeter Continuum Variability in Planck Galactic Cold Clumps. Astrophysical Journal, Supplement Series, 2019, 242, 27.	7.7	O