Ghulam Rasool

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5210524/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Entropy Generation and Consequences of Binary Chemical Reaction on MHD Darcy–Forchheimer Williamson Nanofluid Flow Over Non-Linearly Stretching Surface. Entropy, 2020, 22, 18.	2.2	173
2	Numerical spectral examination of EMHD mixed convective flow of second-grade nanofluid towards a vertical Riga plate using an advanced version of the revised Buongiorno's nanofluid model. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2379-2393.	3.6	121
3	Magnetohydrodynamic Darcy–Forchheimer nanofluid flow over a nonlinear stretching sheet. Physica Scripta, 2019, 94, 105221.	2.5	90
4	Statistical modeling for bioconvective tangent hyperbolic nanofluid towards stretching surface with zero mass flux condition. Scientific Reports, 2021, 11, 13869.	3.3	83
5	Second Grade Bioconvective Nanofluid Flow with Buoyancy Effect and Chemical Reaction. Symmetry, 2020, 12, 621.	2.2	81
6	Significance of Thermal Slip and Convective Boundary Conditions in Three Dimensional Rotating Darcy-Forchheimer Nanofluid Flow. Symmetry, 2020, 12, 741.	2.2	79
7	Entropy Generation and Consequences of MHD in Darcy–Forchheimer Nanofluid Flow Bounded by Non-Linearly Stretching Surface. Symmetry, 2020, 12, 652.	2.2	76
8	Numerical Scrutinization of Darcy-Forchheimer Relation in Convective Magnetohydrodynamic Nanofluid Flow Bounded by Nonlinear Stretching Surface in the Perspective of Heat and Mass Transfer. Micromachines, 2021, 12, 374.	2.9	70
9	Second grade nanofluidic flow past a convectively heated vertical Riga plate. Physica Scripta, 2019, 94, 125212.	2.5	69
10	Darcy-Forchheimer relation in Casson type MHD nanofluid flow over non-linear stretching surface. Propulsion and Power Research, 2020, 9, 159-168.	4.3	69
11	Significance of variability in magnetic field strength and heat source on the radiative-convective motion of sodium alginate-based nanofluid within a Darcy-Brinkman porous structure bounded vertically by an irregular slender surface. Case Studies in Thermal Engineering, 2021, 28, 101428.	5.7	69
12	Darcy-Forchheimer nanofluidic flow manifested with Cattaneo-Christov theory of heat and mass flux over non-linearly stretching surface. PLoS ONE, 2019, 14, e0221302.	2.5	67
13	Characteristics of chemical reaction and convective boundary conditions in Powell-Eyring nanofluid flow along a radiative Riga plate. Heliyon, 2019, 5, e01479.	3.2	66
14	Numerical investigation of EMHD nanofluid flows over a convectively heated riga pattern positioned horizontally in a Darcy-Forchheimer porous medium: application of passive control strategy and generalized transfer laws. Waves in Random and Complex Media, 0, , 1-20.	2.7	65
15	Consequences of Soret–Dufour Effects, Thermal Radiation, and Binary Chemical Reaction on Darcy Forchheimer Flow of Nanofluids. Symmetry, 2020, 12, 1421.	2.2	60
16	Influence of Single- and Multi-Wall Carbon Nanotubes on Magnetohydrodynamic Stagnation Point Nanofluid Flow over Variable Thicker Surface with Concave and Convex Effects. Mathematics, 2020, 8, 104.	2.2	60
17	On the MHD Casson Axisymmetric Marangoni Forced Convective Flow of Nanofluids. Mathematics, 2019, 7, 1087.	2.2	54
18	Finite Element Study of Magnetohydrodynamics (MHD) and Activation Energy in Darcy–Forchheimer Rotating Flow of Casson Carreau Nanofluid. Processes, 2020, 8, 1185.	2.8	51

GHULAM RASOOL

#	Article	IF	CITATIONS
19	Significance of Rosseland's Radiative Process on Reactive Maxwell Nanofluid Flows over an Isothermally Heated Stretching Sheet in the Presence of Darcy–Forchheimer and Lorentz Forces: Towards a New Perspective on Buongiorno's Model. Micromachines, 2022, 13, 368.	2.9	51
20	Thermally Enhanced Darcy-Forchheimer Casson-Water/Glycerine Rotating Nanofluid Flow with Uniform Magnetic Field. Micromachines, 2021, 12, 605.	2.9	44
21	Influence of Chemical Reaction on Marangoni Convective Flow of Nanoliquid in the Presence of Lorentz Forces and Thermal Radiation: A Numerical Investigation. Journal of Advances in Nanotechnology, 2018, 1, 32-49.	3.2	39
22	Darcy-Forchheimer Flow of Water Conveying Multi-Walled Carbon Nanoparticles through a Vertical Cleveland Z-Staggered Cavity Subject to Entropy Generation. Micromachines, 2022, 13, 744.	2.9	39
23	Analyzing the interaction of hybrid base liquid C2H6O2–H2O with hybrid nano-material Ag–MoS2 for unsteady rotational flow referred to an elongated surface using modified Buongiorno's model: FEM simulation. Mathematics and Computers in Simulation, 2021, 190, 57-74.	4.4	37
24	Marangoni Effect in Second Grade Forced Convective Flow of Water Based Nanofluid. Journal of Advances in Nanotechnology, 2018, 1, 50-61.	3.2	35
25	Significance of Double Stratification in Stagnation Point Flow of Third-Grade Fluid towards a Radiative Stretching Cylinder. Mathematics, 2019, 7, 1103.	2.2	34
26	Numerical analysis of heat and mass transfer in micropolar nanofluids flow through lid driven cavity: Finite volume approach. Case Studies in Thermal Engineering, 2022, 37, 102233.	5.7	34
27	Optimal Homotopic Exploration of Features of Cattaneo-Christov Model in Second Grade Nanofluid Flow via Darcy-Forchheimer Medium Subject to Viscous Dissipation and Thermal Radiation. Combinatorial Chemistry and High Throughput Screening, 2022, 25, 2485-2497.	1.1	28
28	Interannual Variability of Air Temperature over Myanmar: The Influence of ENSO and IOD. Climate, 2021, 9, 35.	2.8	26
29	Double-stratified Marangoni boundary layer flow of Casson nanoliquid: probable error application. Journal of Thermal Analysis and Calorimetry, 2022, 147, 6913-6929.	3.6	26
30	Marangoni convective nanofluid flow over an electromagnetic actuator in the presence of firstâ€order chemical reaction. Heat Transfer - Asian Research, 2020, 49, 274-288.	2.8	25
31	Numerical exploration of the features of thermally enhanced chemically reactive radiative Powellâ \in Eyring nanofluid flow via Darcy medium over non-linearly stretching surface affected by a transverse magnetic field and convective boundary conditions. Applied Nanoscience (Switzerland), 2020 1	3.1	24
32	Numerical Investigation of Mixed Convective Williamson Fluid Flow Over an Exponentially Stretching Permeable Curved Surface. Fluids, 2021, 6, 260.	1.7	24
33	MHD squeezed Darcy–Forchheimer nanofluid flow between two h–distance apart horizontal plates. Open Physics, 2020, 18, 1100-1107.	1.7	24
34	Kinetic and Thermal Study of Ethylene and Propylene Homo Polymerization Catalyzed by ansa-Zirconocene Activated with Alkylaluminum/Borate: Effects of Alkylaluminum on Polymerization Kinetics and Polymer Structure. Polymers, 2021, 13, 268.	4.5	23
35	Darcy-Forchheimer relation in Magnetohydrodynamic Jeffrey nanofluid flow over stretching surface. Discrete and Continuous Dynamical Systems - Series S, 2021, 14, 2497.	1.1	23
36	Steady-State Conduction Current Performance for Multilayer Polyimide/SiO2 Films. Polymers, 2021, 13, 640.	4.5	19

GHULAM RASOOL

#	Article	IF	CITATIONS
37	Significance of Darcy-Forchheimer and Lorentz forces on radiative alumina-water nanofluid flows over a slippery curved geometry under multiple convective constraints: a renovated Buongiorno's model with validated thermophysical correlations. Waves in Random and Complex Media, 0, , 1-30.	2.7	19
38	Comparison of empirical models using experimental results of electrical submersible pump under two-phase flow: numerical and empirical model validation. Physica Scripta, 2022, 97, 065209.	2.5	14
39	Development of novel hybrid 2D-3D graphene oxide diamond micro composite polyimide films to ameliorate electrical & thermal conduction. Journal of Industrial and Engineering Chemistry, 2022, 114, 108-114.	5.8	12
40	EM-Wave Diffraction by a Finite Plate with Dirichlet Conditions in the Ionosphere of Cold Plasma. Physics of Wave Phenomena, 2018, 26, 342-350.	1.1	11
41	Entropy Generation in 2D Lid-Driven Porous Container with the Presence of Obstacles of Different Shapes and under the Influences of Buoyancy and Lorentz Forces. Nanomaterials, 2022, 12, 2206.	4.1	11
42	Marangoni forced convective Casson type nanofluid flow in the presence of Lorentz force generated by Riga plate. Discrete and Continuous Dynamical Systems - Series S, 2021, 14, 2517.	1.1	10
43	Consequences of Fourier's and Fick's laws in bioconvective couple stress nanofluid flow configured by an inclined stretchable cylinder. International Journal of Modern Physics B, 2021, 35, 2150176.	2.0	9
44	Thermosoluted Marangoni convective flow towards a permeable Riga surface. Open Physics, 2020, 18, 535-544.	1.7	9
45	Voltage Stability Index Using New Single-Port Equivalent Based on Component Peculiarity and Sensitivity Persistence. Processes, 2021, 9, 1849.	2.8	9
46	DC Breakdown of XLPE Modulated by Space Charge and Temperature Dependent Carrier Mobility. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28, 1514-1522.	2.9	9
47	Numerical simulations of reaction–diffusion equations modeling prey–predator interaction with delay. International Journal of Biomathematics, 2018, 11, 1850054.	2.9	5