Zongyuan Ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5210479/publications.pdf

Version: 2024-02-01

257450 214800 4,499 79 24 47 h-index citations g-index papers 82 82 82 3589 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Big-data and artificial-intelligence-assisted vault prediction and EVO-ICL size selection for myopia correction. British Journal of Ophthalmology, 2023, 107, 201-206.	3.9	35
2	Retinal age gap as a predictive biomarker for mortality risk. British Journal of Ophthalmology, 2023, 107, 547-554.	3.9	49
3	Auto-FSL: Searching the Attribute Consistent Network for Few-Shot Learning. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 1213-1223.	8.3	16
4	Contextual ensemble network for semantic segmentation. Pattern Recognition, 2022, 122, 108290.	8.1	53
5	Early Melanoma Diagnosis With Sequential Dermoscopic Images. IEEE Transactions on Medical Imaging, 2022, 41, 633-646.	8.9	20
6	ZeroNAS: Differentiable Generative Adversarial Networks Search for Zero-Shot Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 9733-9740.	13.9	74
7	Improving Skin cancer Management with ARTificial Intelligence (SMARTI): protocol for a preintervention/postintervention trial of an artificial intelligence system used as a diagnostic aid for skin cancer management in a specialist dermatology setting. BMJ Open, 2022, 12, e050203.	1.9	11
8	ASPIRER: a new computational approach for identifying non-classical secreted proteins based on deep learning. Briefings in Bioinformatics, 2022, 23, .	6.5	11
9	Improving Medical Images Classification With Label Noise Using Dual-Uncertainty Estimation. IEEE Transactions on Medical Imaging, 2022, 41, 1533-1546.	8.9	31
10	Testing Artificial Intelligence Algorithms in the Real World: Lessons From the SMARTI Trial. Iproceedings, 2022, 8, e36902.	0.1	1
11	Association of a wide range of chronic diseases and apolipoprotein E4 genotype with subsequent risk of dementia in community-dwelling adults: A retrospective cohort study. EClinicalMedicine, 2022, 45, 101335.	7.1	15
12	A Deep Learning System for Fully Automated Retinal Vessel Measurement in High Throughput Image Analysis. Frontiers in Cardiovascular Medicine, 2022, 9, 823436.	2.4	14
13	A Machine-Learning-Based Risk-Prediction Tool for HIV and Sexually Transmitted Infections Acquisition over the Next 12 Months. Journal of Clinical Medicine, 2022, 11, 1818.	2.4	17
14	Autonomous Incident Detection on Spectrometers Using Deep Convolutional Models. Sensors, 2022, 22, 160.	3.8	1
15	Association of a wide range of individual chronic diseases and their multimorbidity with brain volumes in the UK Biobank: A cross-sectional study. EClinicalMedicine, 2022, 47, 101413.	7.1	10
16	Artificial Intelligence for Screening of Multiple Retinal and Optic Nerve Diseases. JAMA Network Open, 2022, 5, e229960.	5.9	45
17	Pseudo-Pair Based Self-Similarity Learning for Unsupervised Person Re-Identification. IEEE Transactions on Image Processing, 2022, 31, 4803-4816.	9.8	22
18	Mutual consistency learning for semi-supervised medical image segmentation. Medical Image Analysis, 2022, 81, 102530.	11.6	39

#	Article	IF	Citations
19	Predicting the diagnosis of HIV and sexually transmitted infections among men who have sex with men using machine learning approaches. Journal of Infection, 2021, 82, 48-59.	3.3	29
20	Keyframe Extraction From Laparoscopic Videos via Diverse and Weighted Dictionary Selection. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 1686-1698.	6.3	9
21	Self-supervised Learning of Inter-label Geometric Relationships for Gleason Grade Segmentation. Lecture Notes in Computer Science, 2021, , 57-67.	1.3	3
22	Synergic Adversarial Label Learning for Grading Retinal Diseases via Knowledge Distillation and Multi-Task Learning. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 3709-3720.	6.3	16
23	End-to-End Ugly Duckling Sign Detection for Melanoma Identification withÂTransformers. Lecture Notes in Computer Science, 2021, , 176-184.	1.3	6
24	Relational Subsets Knowledge Distillation for Long-Tailed Retinal Diseases Recognition. Lecture Notes in Computer Science, 2021, , 3-12.	1.3	18
25	Continual Domain Incremental Learning for Chest X-Ray Classification in Low-Resource Clinical Settings. Lecture Notes in Computer Science, 2021, , 226-238.	1.3	9
26	One step closer towards personalized epilepsy management. Brain, 2021, 144, 1624-1626.	7.6	2
27	OCTID: a one-class learning-based Python package for tumor image detection. Bioinformatics, 2021, 37, 3986-3988.	4.1	8
28	Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study. The Lancet Digital Health, 2021, 3, e486-e495.	12.3	65
29	One-Shot Neural Architecture Search: Maximising Diversity to Overcome Catastrophic Forgetting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 2921-2935.	13.9	27
30	Incremental learning for exudate and hemorrhage segmentation on fundus images. Information Fusion, 2021, 73, 157-164.	19.1	15
31	Leveraging Regular Fundus Images for Training UWF Fundus Diagnosis Models via Adversarial Learning and Pseudo-Labeling. IEEE Transactions on Medical Imaging, 2021, 40, 2911-2925.	8.9	30
32	Machine learning models for decision support in epilepsy management: A critical review. Epilepsy and Behavior, 2021, 123, 108273.	1.7	14
33	Medical Matting: A New Perspective onÂMedical Segmentation with Uncertainty. Lecture Notes in Computer Science, 2021, , 573-583.	1.3	6
34	Self-supervised Multimodal Generalized Zero Shot Learning for Gleason Grading. Lecture Notes in Computer Science, 2021, , 46-56.	1.3	3
35	The Importance of Incorporating Human Factors in the Design and Implementation of Artificial Intelligence for Skin Cancer Diagnosis in the Real World. American Journal of Clinical Dermatology, 2021, 22, 233-242.	6.7	26
36	The Association of Age at Diagnosis of Hypertension With Brain Structure and Incident Dementia in the UK Biobank. Hypertension, 2021, 78, 1463-1474.	2.7	35

#	Article	IF	CITATIONS
37	Application of transformers for predicting epilepsy treatment response., 2021,,.		O
38	Macronutrient Intake and Risk of Dementia in Community-Dwelling Older Adults: A Nine-Year Follow-Up Cohort Study. Journal of Alzheimer's Disease, $2021, 1.14$.	2.6	2
39	Adiposity by Differing Measures and the Risk of Cataract in the UK Biobank: The Importance of Diabetes. , 2021, 62, 19.		1
40	Assessing Generalizability of Deep Learning Models Trained on Standardized and Nonstandardized Images and Their Performance Against Teledermatologists. Iproceedings, 2021, 7, e35391.	0.1	0
41	PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins. Bioinformatics, 2020, 36, 704-712.	4.1	36
42	Progressive Transfer Learning and Adversarial Domain Adaptation for Cross-Domain Skin Disease Classification. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 1379-1393.	6.3	75
43	Improving multi-label chest X-ray disease diagnosis by exploiting disease and health labels dependencies. Multimedia Tools and Applications, 2020, 79, 14889-14902.	3.9	17
44	Training data independent image registration using generative adversarial networks and domain adaptation. Pattern Recognition, 2020, 100, 107109.	8.1	39
45	An Interpretable Prediction Model for Identifying N7-Methylguanosine Sites Based on XGBoost and SHAP. Molecular Therapy - Nucleic Acids, 2020, 22, 362-372.	5.1	93
46	New era of personalised epilepsy management. BMJ, The, 2020, 371, m3658.	6.0	20
47	ZSTAD: Zero-Shot Temporal Activity Detection. , 2020, , .		17
48	Use of artificial intelligence in skin cancer diagnosis and management. Medical Journal of Australia, 2020, 213, 256.	1.7	12
49	Registration of Histopathology Images Using Self Supervised Fine Grained Feature Maps. Lecture Notes in Computer Science, 2020, , 41-51.	1.3	5
50	Skin lesion segmentation via generative adversarial networks with dual discriminators. Medical Image Analysis, 2020, 64, 101716.	11.6	156
51	Epileptic Seizure Detection Using Convolutional Neural Network: A Multi-Biosignal study. , 2020, , .		13
52	Adversarial discriminative sim-to-real transfer of visuo-motor policies. International Journal of Robotics Research, 2019, 38, 1229-1245.	8.5	26
53	Underwater Image High Definition Display Using the Multilayer Perceptron and Color Feature-Based SRCNN. IEEE Access, 2019, 7, 83721-83728.	4.2	23
54	Knowledge driven temporal activity localization. Journal of Visual Communication and Image Representation, 2019, 64, 102628.	2.8	6

#	Article	IF	Citations
55	Universal artificial intelligence platform for collaborative management of cataracts. British Journal of Ophthalmology, 2019, 103, 1553-1560.	3.9	87
56	Training Data Independent Image Registration with Gans Using Transfer Learning and Segmentation Information. , 2019, , .		13
57	Model-less Active Compliance for Continuum Robots using Recurrent Neural Networks. , 2019, , .		12
58	Improving Deep Lesion Detection Using 3D Contextual and Spatial Attention. Lecture Notes in Computer Science, 2019, , 185-193.	1.3	20
59	Adversarial Pulmonary Pathology Translation for Pairwise Chest X-Ray Data Augmentation. Lecture Notes in Computer Science, 2019, , 757-765.	1.3	9
60	Retinal Abnormalities Recognition Using Regional Multitask Learning. Lecture Notes in Computer Science, 2019, , 30-38.	1.3	20
61	Structured deep hashing with convolutional neural networks for fast person re-identification. Computer Vision and Image Understanding, 2018, 167, 63-73.	4.7	48
62	FDCNet: filtering deep convolutional network for marine organism classification. Multimedia Tools and Applications, 2018, 77, 21847-21860.	3.9	53
63	Editorial: Artificial Intelligence for Mobile Robotic Networks. Mobile Networks and Applications, 2018, 23, 326-327.	3.3	1
64	Joint Registration And Segmentation Of Xray Images Using Generative Adversarial Networks. Lecture Notes in Computer Science, 2018, , 73-80.	1.3	32
65	Deep Multiscale Convolutional Feature Learning for Weakly Supervised Localization of Chest Pathologies in X-ray Images. Lecture Notes in Computer Science, 2018, , 267-275.	1.3	13
66	Learning Context Flexible Attention Model for Long-Term Visual Place Recognition. IEEE Robotics and Automation Letters, 2018, 3, 4015-4022.	5.1	73
67	Investigating deep side layers for skin lesion segmentation. , 2017, , .		4
68	Skin Disease Recognition Using Deep Saliency Features and Multimodal Learning of Dermoscopy and Clinical Images. Lecture Notes in Computer Science, 2017, , 250-258.	1.3	61
69	Tree-loss function for training neural networks on weakly-labelled datasets. , 2017, , .		2
70	Exploiting local and generic features for accurate skin lesions classification using clinical and dermoscopy imaging., 2017,,.		39
71	DeepFruits: A Fruit Detection System Using Deep Neural Networks. Sensors, 2016, 16, 1222.	3.8	717
72	Exploiting Temporal Information for DCNN-Based Fine-Grained Object Classification., 2016,,.		7

Zongyuan Ge

#	Article	IF	CITATION
7 3	Fine-grained classification via mixture of deep convolutional neural networks. , 2016, , .		36
74	Simple online and realtime tracking. , 2016, , .		1,790
75	Modelling local deep convolutional neural network features to improve fine-grained image classification., 2015,,.		27
76	Distance metric learning for feature-agnostic place recognition. , 2015, , .		10
77	Fine-grained bird species recognition via hierarchical subset learning. , 2015, , .		19
78	Subset feature learning for fine-grained category classification., 2015,,.		37
79	Local inter-session variability modelling for object classification. , 2014, , .		40