
Yuanyue Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5210478/publications.pdf Version: 2024-02-01

VUANVUE LUU

#	Article	IF	CITATIONS
1	Laser-induced porous graphene films from commercial polymers. Nature Communications, 2014, 5, 5714.	5.8	1,645
2	The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science, 2013, 342, 720-723.	6.0	977
3	Solution-processable 2D semiconductors for high-performance large-area electronics. Nature, 2018, 562, 254-258.	13.7	644
4	Defect Engineering Metalâ€Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions. Angewandte Chemie - International Edition, 2018, 57, 10246-10250.	7.2	619
5	Field-effect transistors made from solution-grown two-dimensional tellurene. Nature Electronics, 2018, 1, 228-236.	13.1	591
6	Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3735-3739.	3.3	462
7	Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Science Advances, 2016, 2, e1600069.	4.7	446
8	Schottky-Barrier-Free Contacts with Two-Dimensional Semiconductors by Surface-Engineered MXenes. Journal of the American Chemical Society, 2016, 138, 15853-15856.	6.6	444
9	Oxygenâ€Vacancy Abundant Ultrafine Co ₃ O ₄ /Graphene Composites for Highâ€Rate Supercapacitor Electrodes. Advanced Science, 2018, 5, 1700659.	5.6	392
10	Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nature Catalysis, 2019, 2, 423-430.	16.1	368
11	Self-optimizing, highly surface-active layeredÂmetal dichalcogenide catalysts for hydrogen evolution. Nature Energy, 2017, 2, .	19.8	336
12	Monolayer atomic crystal molecular superlattices. Nature, 2018, 555, 231-236.	13.7	323
13	Cu metal embedded in oxidized matrix catalyst to promote CO ₂ activation and CO dimerization for electrochemical reduction of CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6685-6688.	3.3	322
14	Cones, Pringles, and Grain Boundary Landscapes in Graphene Topology. Nano Letters, 2010, 10, 2178-2183.	4.5	314
15	Predicting Dislocations and Grain Boundaries in Two-Dimensional Metal-Disulfides from the First Principles. Nano Letters, 2013, 13, 253-258.	4.5	310
16	Highâ€Performance Hydrogen Evolution from MoS _{2(1–<i>x</i>)} P <i>_x</i> Solid Solution. Advanced Materials, 2016, 28, 1427-1432.	11.1	309
17	BN White Graphene with "Colorful―Edges: The Energies and Morphology. Nano Letters, 2011, 11, 3113-3116.	4.5	301
18	Feasibility of Lithium Storage on Graphene and Its Derivatives. Journal of Physical Chemistry Letters, 2013, 4, 1737-1742.	2.1	297

YUANYUE LIU

#	Article	IF	CITATIONS
19	Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nature Nanotechnology, 2016, 11, 426-431.	15.6	287
20	Probing the Synthesis of Twoâ€Dimensional Boron by Firstâ€Principles Computations. Angewandte Chemie - International Edition, 2013, 52, 3156-3159.	7.2	274
21	O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Science Advances, 2020, 6, eaba6586.	4.7	263
22	Equilibrium at the edge and atomistic mechanisms of graphene growth. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15136-15140.	3.3	236
23	Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nature Communications, 2021, 12, 4225.	5.8	218
24	Dislocations and Grain Boundaries in Two-Dimensional Boron Nitride. ACS Nano, 2012, 6, 7053-7058.	7.3	216
25	High-Performance Flexible Solid-State Asymmetric Supercapacitors Based on Bimetallic Transition Metal Phosphide Nanocrystals. ACS Nano, 2019, 13, 10612-10621.	7.3	214
26	High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene) Tj ETQq0 0 0 r 18815-18821.	gBT /Overl 3.3	lock 10 Tf 50 213
27	Ripping Graphene: Preferred Directions. Nano Letters, 2012, 12, 293-297.	4.5	200
28	Unveiling the Active Structure of Single Nickel Atom Catalysis: Critical Roles of Charge Capacity and Hydrogen Bonding. Journal of the American Chemical Society, 2020, 142, 5773-5777.	6.6	199
29	Defect-enriched iron fluoride-oxide nanoporous thin films bifunctional catalyst for water splitting. Nature Communications, 2018, 9, 1809.	5.8	188
30	Piezophototronic Effect in Singleâ€Atomic‣ayer MoS ₂ for Strainâ€Gated Flexible Optoelectronics. Advanced Materials, 2016, 28, 8463-8468.	11.1	187
31	Two-Dimensional Mono-Elemental Semiconductor with Electronically Inactive Defects: The Case of Phosphorus. Nano Letters, 2014, 14, 6782-6786.	4.5	186
32	Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide electrocatalysts. Energy and Environmental Science, 2017, 10, 1487-1492.	15.6	176
33	Graphene Edge from Armchair to Zigzag: The Origins of Nanotube Chirality?. Physical Review Letters, 2010, 105, 235502.	2.9	174
34	Substantial Impact of Charge on Electrochemical Reactions of Two-Dimensional Materials. Journal of the American Chemical Society, 2018, 140, 9127-9131.	6.6	170
35	Origin of Selective Production of Hydrogen Peroxide by Electrochemical Oxygen Reduction. Journal of the American Chemical Society, 2021, 143, 9423-9428.	6.6	169
36	Multifunctional Active enterâ€Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 14533-14540.	7.2	152

YUANYUE LIU

#	Article	IF	CITATIONS
37	Cobalt-Doped Black TiO ₂ Nanotube Array as a Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment. ACS Catalysis, 2018, 8, 4278-4287.	5.5	151
38	Atomic H-Induced Mo ₂ C Hybrid as an Active and Stable Bifunctional Electrocatalyst. ACS Nano, 2017, 11, 384-394.	7.3	149
39	Defect Engineering Metalâ€Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions. Angewandte Chemie, 2018, 130, 10403-10407.	1.6	139
40	Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells. Energy and Environmental Science, 2020, 13, 3544-3555.	15.6	129
41	Growth Mechanism and Morphology of Hexagonal Boron Nitride. Nano Letters, 2016, 16, 1398-1403.	4.5	123
42	What Limits the Intrinsic Mobility of Electrons and Holes in Two Dimensional Metal Dichalcogenides?. Journal of the American Chemical Society, 2018, 140, 17895-17900.	6.6	121
43	Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. Nano Research, 2013, 6, 703-711.	5.8	118
44	Stable Metal Anode enabled by Porous Lithium Foam with Superior Ion Accessibility. Advanced Materials, 2018, 30, e1802156.	11.1	115
45	High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters. ACS Applied Materials & Interfaces, 2017, 9, 3785-3791.	4.0	108
46	Tellurium: Fast Electrical and Atomic Transport along the Weak Interaction Direction. Journal of the American Chemical Society, 2018, 140, 550-553.	6.6	101
47	Engineering Substrate Interaction To Improve Hydrogen Evolution Catalysis of Monolayer MoS ₂ Films beyond Pt. ACS Nano, 2020, 14, 1707-1714.	7.3	97
48	Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects. Nano Letters, 2016, 16, 3335-3340.	4.5	94
49	Assessing Carbon-Based Anodes for Lithium-Ion Batteries: A Universal Description of Charge-Transfer Binding. Physical Review Letters, 2014, 113, 028304.	2.9	93
50	First-Principles Studies of Li Nucleation on Graphene. Journal of Physical Chemistry Letters, 2014, 5, 1225-1229.	2.1	82
51	Large Hexagonal Bi―and Trilayer Graphene Single Crystals with Varied Interlayer Rotations. Angewandte Chemie - International Edition, 2014, 53, 1565-1569.	7.2	82
52	Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media. Nature Communications, 2022, 13, .	5.8	82
53	Air Passivation of Chalcogen Vacancies in Twoâ€Dimensional Semiconductors. Angewandte Chemie - International Edition, 2016, 55, 965-968.	7.2	80
54	Single vs double atom catalyst for N ₂ activation in nitrogen reduction reaction: A DFT perspective. EcoMat, 2020, 2, e12014.	6.8	75

Yuanyue Liu

#	Article	IF	CITATIONS
55	Hierarchical nanoarchitectured hybrid electrodes based on ultrathin MoSe ₂ nanosheets on 3D ordered macroporous carbon frameworks for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 2843-2850.	5.2	69
56	The Optimal Electronic Structure for High-Mobility 2D Semiconductors: Exceptionally High Hole Mobility in 2D Antimony. Journal of the American Chemical Society, 2019, 141, 16296-16302.	6.6	65
57	Understanding Synergism of Cobalt Metal and Copper Oxide toward Highly Efficient Electrocatalytic Oxygen Evolution. ACS Catalysis, 2018, 8, 12030-12040.	5.5	60
58	CO ₂ Reduction on Copper's Twin Boundary. ACS Catalysis, 2020, 10, 2026-2032.	5.5	60
59	Atomistic Understanding of Two-dimensional Electrocatalysts from First Principles. Chemical Reviews, 2022, 122, 10675-10709.	23.0	60
60	Why Two-Dimensional Semiconductors Generally Have Low Electron Mobility. Physical Review Letters, 2020, 125, 177701.	2.9	58
61	Single-Atom Electroplating on Two Dimensional Materials. Chemistry of Materials, 2019, 31, 429-435.	3.2	55
62	Mass Transfer and Reaction Kinetic Enhanced Electrode for Highâ€Performance Aqueous Flow Batteries. Advanced Functional Materials, 2019, 29, 1903192.	7.8	50
63	Ultrafine oxygen-defective iridium oxide nanoclusters for efficient and durable water oxidation at high current densities in acidic media. Journal of Materials Chemistry A, 2020, 8, 24743-24751.	5.2	45
64	Highly Selective Oxygen Reduction to Hydrogen Peroxide on a Carbon-Supported Single-Atom Pd Electrocatalyst. ACS Catalysis, 2022, 12, 4156-4164.	5.5	44
65	CO2/carbonate-mediated electrochemical water oxidation to hydrogen peroxide. Nature Communications, 2022, 13, 2668.	5.8	44
66	Implications of <i>in situ</i> chalcogen substitutions in polysulfides for rechargeable batteries. Energy and Environmental Science, 2021, 14, 5423-5432.	15.6	43
67	A reticulate superhydrophobic self-assembly structure prepared by ZnO nanowires. Nanotechnology, 2009, 20, 165602.	1.3	41
68	Syntheses of Colloidal F:In ₂ O ₃ Cubes: Fluorine-Induced Faceting and Infrared Plasmonic Response. Chemistry of Materials, 2019, 31, 2661-2676.	3.2	41
69	Three-dimensional N- and S-codoped graphene hydrogel with in-plane pores for high performance supercapacitor. Microporous and Mesoporous Materials, 2018, 268, 260-267.	2.2	39
70	Polycrystalline Few-Layer Graphene as a Durable Anticorrosion Film for Copper. Nano Letters, 2021, 21, 1161-1168.	4.5	39
71	Doping-modulated strain control of bifunctional electrocatalysis for rechargeable zinc–air batteries. Energy and Environmental Science, 2021, 14, 5035-5043.	15.6	39
72	Healing of Planar Defects in 2D Materials via Grain Boundary Sliding. Advanced Materials, 2019, 31, e1900237.	11.1	38

YUANYUE LIU

#	Article	IF	CITATIONS
73	Regulating Topâ€Surface Multilayer/Singleâ€Crystal Graphene Growth by "Gettering―Carbon Diffusion at Backside of the Copper Foil. Advanced Functional Materials, 2017, 27, 1700121.	7.8	35
74	Optothermoplasmonic Nanolithography for Onâ€Demand Patterning of 2D Materials. Advanced Functional Materials, 2018, 28, 1803990.	7.8	35
75	Enhancing Interconnect Reliability and Performance by Converting Tantalum to 2D Layered Tantalum Sulfide at Low Temperature. Advanced Materials, 2019, 31, e1902397.	11.1	35
76	Hybrid Organic–Inorganic Gel Electrocatalyst for Stable Acidic Water Oxidation. ACS Nano, 2019, 13, 14368-14376.	7.3	34
77	The Restructuring-Induced CoO _{<i>x</i>} Catalyst for Electrochemical Water Splitting. Jacs Au, 2021, 1, 2216-2223.	3.6	32
78	Hexagonal Graphene Onion Rings. Journal of the American Chemical Society, 2013, 135, 10755-10762.	6.6	31
79	Suppress carrier recombination by introducing defects: The case of Si solar cell. Applied Physics Letters, 2016, 108, .	1.5	23
80	Surface Valence State Effect of MoO ₂₊ <i>_x</i> on Electrochemical Nitrogen Reduction. Advanced Science, 2022, 9, e2104857.	5.6	23
81	Synergies between electronic and geometric effects of Mo-doped Au nanoparticles for effective CO ₂ electrochemical reduction. Journal of Materials Chemistry A, 2020, 8, 12291-12295.	5.2	21
82	Solvent-directed sol-gel assembly of 3-dimensional graphene-tented metal oxides and strong synergistic disparities in lithium storage. Journal of Materials Chemistry A, 2016, 4, 4032-4043.	5.2	19
83	Ultrafast Intercalation Enabled by Strong Solvent–Host Interactions: Understanding Solvent Effect at the Atomic Level. Angewandte Chemie - International Edition, 2019, 58, 17205-17209.	7.2	19
84	Intrinsic charge carrier mobility of 2D semiconductors. Computational Materials Science, 2021, 194, 110468.	1.4	18
85	The electronic structure underlying electrocatalysis of twoâ€dimensional materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1418.	6.2	17
86	Multifunctional Active enterâ€Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angewandte Chemie, 2020, 132, 14641-14648.	1.6	17
87	Universal roles of hydrogen in electrochemical performance of graphene: high rate capacity and atomistic origins. Scientific Reports, 2015, 5, 16190.	1.6	15
88	Air Passivation of Chalcogen Vacancies in Twoâ€Dimensional Semiconductors. Angewandte Chemie, 2016, 128, 977-980.	1.6	15
89	Improving selectivity of CO reduction <i>via</i> reducing the coordination of critical intermediates. Journal of Materials Chemistry A, 2019, 7, 24000-24004.	5.2	14
90	A Membraneless Direct Isopropanol Fuel Cell (DIPAFC) Operated with a Catalyst-Selective Principle. Journal of Physical Chemistry C, 2018, 122, 13558-13563.	1.5	13

Yuanyue Liu

#	Article	IF	CITATIONS
91	Atomic-Level Dynamics of Point Vacancies and the Induced Stretched Defects in 2D Monolayer PtSe ₂ . Nano Letters, 2022, 22, 3289-3297.	4.5	9
92	A new model for the formation of contact angle and contact angle hysteresis. Chinese Physics B, 2010, 19, 106801.	0.7	8
93	Eliminating Trapâ€6tates and Functionalizing Vacancies in 2D Semiconductors by Electrochemistry. Small, 2019, 15, e1901899.	5.2	8
94	Prediction of Stable and High-Performance Charge Transport in Zigzag Tellurene Nanoribbons. IEEE Transactions on Electron Devices, 2019, 66, 2365-2369.	1.6	8
95	Clarification of the relative magnitude of exciton binding energies in ZnO and SnO2. Applied Physics Letters, 2022, 120, .	1.5	8
96	Understanding high-field electron transport properties and strain effects of monolayer transition metal dichalcogenides. Physical Review B, 2020, 102, .	1.1	7
97	How to resolve a phonon-associated property into contributions of basic phonon modes. JPhys Materials, 2019, 2, 045005.	1.8	6
98	Understanding Charge Storage in Hydrated Layered Solids MOPO ₄ (M = V, Nb) with Tunable Interlayer Chemistry. ACS Nano, 2020, 14, 13824-13833.	7.3	6
99	Role of flexural phonons in carrier mobility of two-dimensional semiconductors: free standing vs on substrate. Journal of Physics Condensed Matter, 2021, 33, 234003.	0.7	6
100	Optothermoplasmonic Patterning: Optothermoplasmonic Nanolithography for Onâ€Demand Patterning of 2D Materials (Adv. Funct. Mater. 41/2018). Advanced Functional Materials, 2018, 28, 1870299.	7.8	4
101	Ultrafast Intercalation Enabled by Strong Solvent–Host Interactions: Understanding Solvent Effect at the Atomic Level. Angewandte Chemie, 2019, 131, 17365-17369.	1.6	3
102	Stable Low-Dimensional Boron Chalcogenides from Planar Structural Motifs. Journal of Physical Chemistry A, 2021, 125, 6059-6063.	1.1	2
103	Direct growth of graphene on dielectric substrates: Epitaxy at incommensurate and reactive interfaces. , 2016, , .		1
104	Aqueous Flow Batteries: Mass Transfer and Reaction Kinetic Enhanced Electrode for Highâ€₽erformance Aqueous Flow Batteries (Adv. Funct. Mater. 43/2019). Advanced Functional Materials, 2019, 29, 1970297.	7.8	0
105	Understanding the Binding Mechanism for Catalysis and Energy Storage. ECS Meeting Abstracts, 2016, ,	0.0	0
106	Passivating Defects and Tunning the Schottky Barrier for Two-Dimensional Semiconductors. ECS Meeting Abstracts, 2016, , .	0.0	0