Barbara Castella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5210175/publications.pdf

Version: 2024-02-01

29 1,039 17 26
papers citations h-index g-index

29 29 29 1883
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Effector Î ³ δT cells and tumor cells as immune targets of zoledronic acid in multiple myeloma. Leukemia, 2005, 19, 664-670.	7.2	119
2	Enhanced ability of dendritic cells to stimulate innate and adaptive immunity on short-term incubation with zoledronic acid. Blood, 2007, 110, 921-927.	1.4	98
3	Omega 3 fatty acids chemosensitize multidrug resistant colon cancer cells by down-regulating cholesterol synthesis and altering detergent resistant membranes composition. Molecular Cancer, 2013, 12, 137.	19.2	84
4	Immune Modulation by Zoledronic Acid in Human Myeloma: An Advantageous Cross-Talk between VÎ ³ 9Vδ2 T Cells, αβ CD8+ T Cells, Regulatory T Cells, and Dendritic Cells. Journal of Immunology, 2011, 187, 1578-1590.	0.8	77
5	IGHV unmutated CLL B cells are more prone to spontaneous apoptosis and subject to environmental prosurvival signals than mutated CLL B cells. Leukemia, 2011, 25, 828-837.	7.2	61
6	Microvesicles released from multiple myeloma cells are equipped with ectoenzymes belonging to canonical and non-canonical adenosinergic pathways and produce adenosine from ATP and NAD ⁺ . Oncolmmunology, 2018, 7, e1458809.	4.6	59
7	Anergic bone marrow VÎ ³ 9VÎ 2 T cells as early and long-lasting markers of PD-1-targetable microenvironment-induced immune suppression in human myeloma. Oncolmmunology, 2015, 4, e1047580.	4.6	58
8	The ATP-binding cassette transporter A1 regulates phosphoantigen release and $\hat{V^{3}9V^{2}}$ T cell activation by dendritic cells. Nature Communications, 2017, 8, 15663.	12.8	57
9	Dysfunctional $V\hat{l}^39V\hat{l}^2$ T cells are negative prognosticators and markers of dysregulated mevalonate pathway activity in chronic lymphocytic leukemia cells. Blood, 2012, 120, 3271-3279.	1.4	51
10	Zoledronic Acid Restores Doxorubicin Chemosensitivity and Immunogenic Cell Death in Multidrug-Resistant Human Cancer Cells. PLoS ONE, 2013, 8, e60975.	2.5	49
11	Efficacy of a Cancer Vaccine against <i>ALK</i> Rearranged Lung Tumors. Cancer Immunology Research, 2015, 3, 1333-1343.	3.4	42
12	$\hat{V^{3}}$ 9 $\hat{V^{2}}$ 7 cell-based immunotherapy in hematological malignancies: from bench to bedside. Cellular and Molecular Life Sciences, 2011, 68, 2419-2432.	5.4	35
13	Simvastatin and downstream inhibitors circumvent constitutive and stromal cell-induced resistance to doxorubicin in IGHV unmutated CLL cells. Oncotarget, 2015, 6, 29833-29846.	1.8	33
14	Increasing intratumor C/EBP-Î ² LIP and nitric oxide levels overcome resistance to doxorubicin in triple negative breast cancer. Journal of Experimental and Clinical Cancer Research, 2018, 37, 286.	8.6	32
15	An Autocrine Cytokine/JAK/STAT-Signaling Induces Kynurenine Synthesis in Multidrug Resistant Human Cancer Cells. PLoS ONE, 2015, 10, e0126159.	2.5	27
16	The bone marrow of myeloma patients is steadily inhabited by a normal-sized pool of functional regulatory T cells irrespectiveof the disease status. Haematologica, 2014, 99, 1605-1610.	3.5	27
17	VÎ ³ 9VÎ ² T Cells in the Bone Marrow of Myeloma Patients: A Paradigm of Microenvironment-Induced Immune Suppression. Frontiers in Immunology, 2018, 9, 1492.	4.8	21
18	ABCA1, apoA-I, and BTN3A1: A Legitimate Ménage à Trois in Dendritic Cells. Frontiers in Immunology, 2018, 9, 1246.	4.8	16

#	Article	IF	CITATIONS
19	Molecular dynamics of targeting CD38 in multiple myeloma. British Journal of Haematology, 2021, 193, 581-591.	2.5	16
20	$\hat{V^{3}}$ 9 $\hat{V^{2}}$ 7 Cells as Strategic Weapons to Improve the Potency of Immune Checkpoint Blockade and Immune Interventions in Human Myeloma. Frontiers in Oncology, 2018, 8, 508.	2.8	15
21	Mitochondrial metabolism: Inducer or therapeutic target in tumor immune-resistance?. Seminars in Cell and Developmental Biology, 2020, 98, 80-89.	5.0	14
22	Ectonucleotidase Expression on Human Amnion Epithelial Cells: Adenosinergic Pathways and Dichotomic Effects on Immune Effector Cell Populations. Journal of Immunology, 2019, 202, 724-735.	0.8	13
23	Immunomodulatory and clinical effects of daratumumab in Tâ€cell acute lymphoblastic leukaemia. British Journal of Haematology, 2020, 191, e28-e32.	2.5	13
24	Humoral immune responses toward tumor-derived antigens in previously untreated patients with chronic lymphocytic leukemia. Oncotarget, 2017, 8, 3274-3288.	1.8	13
25	CD38 and Antibody Therapy: What Can Basic Science Add?. Blood, 2016, 128, SCI-36-SCI-36.	1.4	8
26	Immune Checkpoint Blockade Combinations As Promising Strategy for Cancer Immunotherapy in Multiple Myeloma Patients. Blood, 2016, 128, 2059-2059.	1.4	1
27	The Mevalonate Pathway and Downstream Signal Transducers As Therapeutic Targets to Overcome Multidrug Resistance in Chronic Lymphocytic Leukemia (CLL). Blood, 2012, 120, 3881-3881.	1.4	0
28	Identification of Novel Tumor-Associated Antigens in Chronic Lymphocytic Leukemia (CLL) by Serological Proteome Analysis (SERPA). Blood, 2012, 120, 3878-3878.	1.4	0
29	ATP-Binding-Cassette A1 Regulates Extracellular Isopentenyl Pyrophosphate Release and VÎ ³ 9VÎ ² T-Cell Activation By Dendritic Cells. Blood, 2016, 128, 3709-3709.	1.4	0