
Percy H Carter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5210114/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Discovery of BMS-753426: A Potent Orally Bioavailable Antagonist of CC Chemokine Receptor 2. ACS Medicinal Chemistry Letters, 2021, 12, 969-975.	1.3	2
2	Bicyclic Ligand-Biased Agonists of S1P ₁ : Exploring Side Chain Modifications to Modulate the PK, PD, and Safety Profiles. Journal of Medicinal Chemistry, 2021, 64, 1454-1480.	2.9	4
3	Discovery of BMS-986202: A Clinical Tyk2 Inhibitor that Binds to Tyk2 JH2. Journal of Medicinal Chemistry, 2021, 64, 677-694.	2.9	41
4	BMS-813160: A Potent CCR2 and CCR5 Dual Antagonist Selected as a Clinical Candidate. ACS Medicinal Chemistry Letters, 2021, 12, 1753-1758.	1.3	16
5	Discovery of 2,6–difluorobenzyl ether series of phenyl ((R)–3–phenylpyrrolidin–3–yl)sulfones as surprisingly potent, selective and orally bioavailable RORÎ ³ t inverse agonists. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127441.	1.0	3
6	Aryl Ether-Derived Sphingosine-1-Phosphate Receptor (S1P1) Modulators: Optimization of the PK, PD, and Safety Profiles. ACS Medicinal Chemistry Letters, 2020, 11, 1766-1772.	1.3	5
7	Driving Potency with Rotationally Stable Atropisomers: Discovery of Pyridopyrimidinedione-Carbazole Inhibitors of BTK. ACS Medicinal Chemistry Letters, 2020, 11, 2195-2203.	1.3	6
8	Discovery of (3S,4S)-3-methyl-3-(4-fluorophenyl)-4-(4-(1,1,1,3,3,3-hexafluoro-2-hydroxyprop-2-yl)phenyl)pyrrolidines as novel RORγt inverse agonists. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127392.	1.0	9
9	Discovery of BMS-986251: A Clinically Viable, Potent, and Selective RORÎ ³ t Inverse Agonist. ACS Medicinal Chemistry Letters, 2020, 11, 1221-1227.	1.3	33
10	Identification of <i>N</i> -Methyl Nicotinamide and <i>N</i> -Methyl Pyridazine-3-Carboxamide Pseudokinase Domain Ligands as Highly Selective Allosteric Inhibitors of Tyrosine Kinase 2 (TYK2). Journal of Medicinal Chemistry, 2019, 62, 8953-8972.	2.9	59
11	Highly Selective Inhibition of Tyrosine Kinase 2 (TYK2) for the Treatment of Autoimmune Diseases: Discovery of the Allosteric Inhibitor BMS-986165. Journal of Medicinal Chemistry, 2019, 62, 8973-8995.	2.9	212
12	Rationally Designed, Conformationally Constrained Inverse Agonists of RORγt—Identification of a Potent, Selective Series with Biologic-Like in Vivo Efficacy. Journal of Medicinal Chemistry, 2019, 62, 9931-9946.	2.9	36
13	Identification of potent, selective and orally bioavailable phenyl ((R)-3-phenylpyrrolidin-3-yl)sulfone analogues as RORγt inverse agonists. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2265-2269.	1.0	14
14	Discovery of Branebrutinib (BMS-986195): A Strategy for Identifying a Highly Potent and Selective Covalent Inhibitor Providing Rapid in Vivo Inactivation of Bruton's Tyrosine Kinase (BTK). Journal of Medicinal Chemistry, 2019, 62, 3228-3250.	2.9	78
15	Development of a Scalable Synthesis for the Potent Kinase Inhibitor BMS-986236; 1-(5-(4-(3-Hydroxy-3-methylbutyl)-1H-1,2,3-triazol-1-yl)-4-(isopropylamino)pyridin-2-yl)-1H-pyrazolo[3,4-b]pyric Organic Process Research and Development, 2019, 23, 912-918.	line-5±ærbo	onitr a le.
16	Identification of Imidazo[1,2- <i>b</i>]pyridazine Derivatives as Potent, Selective, and Orally Active Tyk2 JH2 Inhibitors. ACS Medicinal Chemistry Letters, 2019, 10, 383-388.	1.3	40
17	Structure-based Discovery of Phenyl (3-Phenylpyrrolidin-3-yl)sulfones as Selective, Orally Active RORÎ ³ t Inverse Agonists. ACS Medicinal Chemistry Letters, 2019, 10, 367-373.	1.3	48
18	ldentification and Preclinical Pharmacology of ((1 <i>R</i> ,3 <i>S</i>)-1-Amino-3-((<i>S</i>)-6-(2-methoxyphenethyl)-5,6,7,8-tetrahydronaphthalen-2-yl)cyclop (BMS-986166): A Differentiated Sphingosine-1-phosphate Receptor 1 (S1P ₁) Modulator	oenty])metl	nanol_3

Advanced into Clinical Trials. Journal of Medicinal Chemistry, 2019, 62, 2265-2285.

PERCY H CARTER

#	Article	IF	CITATIONS
19	Discovery of a JAK1/3 Inhibitor and Use of a Prodrug To Demonstrate Efficacy in a Model of Rheumatoid Arthritis. ACS Medicinal Chemistry Letters, 2019, 10, 306-311.	1.3	11
20	Use of a Conformational-Switching Mechanism to Modulate Exposed Polarity: Discovery of CCR2 Antagonist BMS-741672. ACS Medicinal Chemistry Letters, 2019, 10, 300-305.	1.3	14
21	Leveraging a "Catch–Release―Logic Gate Process for the Synthesis and Nonchromatographic Purification of Thioether- or Amine-Bridged Macrocyclic Peptides. Journal of Organic Chemistry, 2018, 83, 4323-4335.	1.7	13
22	Identification of bicyclic hexafluoroisopropyl alcohol sulfonamides as retinoic acid receptor-related orphan receptor gamma (RORγ/RORc) inverse agonists. Employing structure-based drug design to improve pregnane X receptor (PXR) selectivity. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 85-93.	1.0	35
23	Conversion of carbazole carboxamide based reversible inhibitors of Bruton's tyrosine kinase (BTK) into potent, selective irreversible inhibitors in the carbazole, tetrahydrocarbazole, and a new 2,3-dimethylindole series. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3080-3084.	1.0	11
24	Regioselective Epoxide Ring Opening for the Stereospecific Scale-Up Synthesis of BMS-960, A Potent and Selective Isoxazole-Containing S1P ₁ Receptor Agonist. Organic Process Research and Development, 2017, 21, 200-207.	1.3	25
25	Identification of potent tricyclic prodrug S1P1 receptor modulators. MedChemComm, 2017, 8, 725-729.	3.5	6
26	Discovery of potent and efficacious pyrrolopyridazines as dual JAK1/3 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3101-3106.	1.0	10
27	Discovery of highly potent, selective, covalent inhibitors of JAK3. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4622-4625.	1.0	24
28	Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature, 2016, 540, 458-461.	13.7	220
29	Discovery and SAR of pyrrolo[2,1-f][1,2,4]triazin-4-amines as potent and selective PI3Kδinhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4256-4260.	1.0	12
30	Discovery of 6-Fluoro-5-(<i>R</i>)-(3-(<i>S</i>)-(8-fluoro-1-methyl-2,4-dioxo-1,2-dihydroquinazolin-3(4 <i>H</i>)-yl)-2-methylph (BMS-986142): A Reversible Inhibitor of Bruton's Tyrosine Kinase (BTK) Conformationally Constrained by Two Locked Atropisomers. Journal of Medicinal Chemistry, 2016, 59, 9173-9200.	enyl)-2-(< 2:9	i>S)-(2-h 111
31	Small Molecule Reversible Inhibitors of Bruton's Tyrosine Kinase (BTK): Structure–Activity Relationships Leading to the Identification of 7-(2-Hydroxypropan-2-yl)-4-[2-methyl-3-(4-oxo-3,4-dihydroquinazolin-3-yl)phenyl]-9 <i>H</i> -carbazole-1-carboxam (BMS-935177), Iournal of Medicinal Chemistry, 2016, 59, 7915-7935.	iđe ⁹	41
32	Asymmetric Hydroboration Approach to the Scalable Synthesis of ((1 <i>R</i> ,3 <i>S</i>)-1-Amino-3-((<i>R</i>)-6-hexyl-5,6,7,8-tetrahydronaphthalen-2-yl)cyclopentyl)methanol (BMS-986104) as a Potent S1P ₁ Receptor Modulator. Journal of Medicinal Chemistry, 2016, 59, 11138-11147.	2.9	10
33	Discovery and Structure–Activity Relationship (SAR) of a Series of Ethanolamine-Based Direct-Acting Agonists of Sphingosine-1-phosphate (S1P ₁). Journal of Medicinal Chemistry, 2016, 59, 6248-6264.	2.9	22
34	Identification and Preclinical Pharmacology of BMS-986104: A Differentiated S1P ₁ Receptor Modulator in Clinical Trials. ACS Medicinal Chemistry Letters, 2016, 7, 283-288.	1.3	25
35	Discovery and synthesis of cyclohexenyl derivatives as modulators of CC chemokine receptor 2 activity. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 662-666.	1.0	3
36	Actions of the Small Molecule Ligands SW106 and AH-3960 on the Type-1 Parathyroid Hormone Receptor. Molecular Endocrinology, 2015, 29, 307-321.	3.7	30

PERCY H CARTER

#	Article	IF	CITATIONS
37	Design and synthesis of carbazole carboxamides as promising inhibitors of Bruton's tyrosine kinase (BTK) and Janus kinase 2 (JAK2). Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4265-4269.	1.0	23
38	Discovery of a Potent and Orally Bioavailable Dual Antagonist of CC Chemokine Receptors 2 and 5. ACS Medicinal Chemistry Letters, 2015, 6, 439-444.	1.3	14
39	Purine derivatives as potent Bruton's tyrosine kinase (BTK) inhibitors for autoimmune diseases. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2206-2211.	1.0	34
40	Alkylsulfone-containing trisubstituted cyclohexanes as potent and bioavailable chemokine receptor 2 (CCR2) antagonists. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1843-1845.	1.0	4
41	Discovery of pyrrolo[1,2-b]pyridazine-3-carboxamides as Janus kinase (JAK) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5721-5726.	1.0	27
42	Discovery of the CCR1 Antagonist, BMS-817399, for the Treatment of Rheumatoid Arthritis. Journal of Medicinal Chemistry, 2014, 57, 7550-7564.	2.9	46
43	Progress in the discovery of CC chemokine receptor 2 antagonists, 2009 – 2012. Expert Opinion on Therapeutic Patents, 2013, 23, 549-568.	2.4	30
44	The discovery of BMS-457, a potent and selective CCR1 antagonist. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3833-3840.	1.0	22
45	Benzimidazoles as benzamide replacements within cyclohexane-based CC chemokine receptor 2 (CCR2) antagonists. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6181-6184.	1.0	5
46	Discovery and Lead Optimization of a Novel Series of CC Chemokine Receptor 1 (CCR1)-Selective Piperidine Antagonists via Parallel Synthesis. Journal of Medicinal Chemistry, 2012, 55, 9643-9653.	2.9	21
47	Synthesis of 3-phenylsulfonylmethyl cyclohexylaminobenzamide-derived antagonists of CC chemokine receptor 2 (CCR2). Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1384-1387.	1.0	3
48	Discovery of an orally-bioavailable CC Chemokine Receptor 2 antagonist derived from an acyclic diaminoalcohol backbone. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3311-3316.	1.0	9
49	Î ³ -Lactams as glycinamide replacements in cyclohexane-based CC chemokine receptor 2 (CCR2) antagonists. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2425-2430.	1.0	23
50	Clinically validated approaches to the treatment of autoimmune diseases. Expert Opinion on Investigational Drugs, 2010, 19, 195-213.	1.9	26
51	Spiroindenes and spiroindanes as antagonists of CC chemokine receptor 2: WO 2009023754. Expert Opinion on Therapeutic Patents, 2010, 20, 283-289.	2.4	4
52	N-aryl pyrazoles, indazoles and azaindazoles as antagonists of CC chemokine receptor 1: patent cooperation treaty applications WO2010/036632, WO2009/134666 and WO2009/137338. Expert Opinion on Therapeutic Patents, 2010, 20, 1609-1618.	2.4	9
53	Discovery of trisubstituted cyclohexanes as potent CC chemokine receptor 2 (CCR2) antagonists. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 597-601.	1.0	24
54	Novel sulfone-containing di- and trisubstituted cyclohexanes as potent CC chemokine receptor 2 (CCR2) antagonists. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3418-3422.	1.0	17

PERCY H CARTER

#	Article	IF	CITATIONS
55	Enantioselective Synthesis of Benzyl (1S,2R,4R)-4-(tert-Butoxycarbonylamino)-2-(hydroxymethyl)cyclohexylcarbamate Using an Iodolactamization As the Key Step. Journal of Organic Chemistry, 2009, 74, 6368-6370.	1.7	28
56	Chapter 12 The Use of Receptor Homology Modeling to Facilitate the Design of Selective Chemokine Receptor Antagonists. Methods in Enzymology, 2009, 461, 249-279.	0.4	21
57	Synthesis and evaluation of cis-3,4-disubstituted piperidines as potent CC chemokine receptor 2 (CCR2) antagonists. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5063-5065.	1.0	24
58	Discovery of Disubstituted Cyclohexanes as a New Class of CC Chemokine Receptor 2 Antagonists. Journal of Medicinal Chemistry, 2008, 51, 721-724.	2.9	44
59	Discovery of a small molecule antagonist of the parathyroid hormone receptor by using an N-terminal parathyroid hormone peptide probe. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6846-6851.	3.3	39
60	Chapter 14 Advances in the Discovery of CC Chemokine Receptor 2 Antagonists. Annual Reports in Medicinal Chemistry, 2007, 42, 211-227.	0.5	18
61	Capped diaminopropionamide–glycine dipeptides are inhibitors of CC chemokine receptor 2 (CCR2). Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5455-5461.	1.0	16
62	CC chemokine receptor-3 (CCR3) antagonists: Improving the selectivity of DPC168 by reducing central ring lipophilicity. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2992-2997.	1.0	21
63	The Roles of Parathyroid Hormone and Calcitonin in Bone Remodeling: Prospects for Novel Therapeutics. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2006, 6, 59-76.	0.6	60
64	N-Arylalkylpiperidine urea derivatives as CC chemokine receptor-3 (CCR3) antagonists. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 787-791.	1.0	15
65	Both 5-arylidene-2-thioxodihydropyrimidine-4,6(1H,5H)-diones and 3-thioxo-2,3-dihydro-1H-imidazo[1,5-a]indol-1-ones are light-Dependent tumor necrosis factor-α antagonists. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 533-538.	1.0	63
66	A new synthesis of cytoxazone and its diastereomers provides key initial SAR information. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1237-1239.	1.0	35
67	Chemokine receptor antagonism as an approach to anti-inflammatory therapy: â€`just right' or plain wrong?. Current Opinion in Chemical Biology, 2002, 6, 510-525.	2.8	68
68	Enhanced Activity in Parathyroid Hormone-(1–14) and -(1–11): Novel Peptides for Probing Ligand-Receptor Interactions*. Endocrinology, 2001, 142, 3068-3074.	1.4	64
69	Identification of Determinants of Inverse Agonism in a Constitutively Active Parathyroid Hormone/Parathyroid Hormone-related Peptide Receptor by Photoaffinity Cross-linking and Mutational Analysis. Journal of Biological Chemistry, 2001, 276, 42692-42699.	1.6	33
70	Enhanced Activity in Parathyroid Hormone-(1–14) and -(1–11): Novel Peptides for Probing Ligand-Receptor Interactions. , 0, .		27