
Mary L Kraft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5209937/publications.pdf Version: 2024-02-01

MADVI KDAFT

#	Article	IF	CITATIONS
1	Depth correction of 3D NanoSIMS images using secondary electron pixel intensities. Biointerphases, 2021, 16, 041005.	1.6	4
2	High-Resolution Secondary Ion Mass Spectrometry Analysis of Cell Membranes. Analytical Chemistry, 2020, 92, 1645-1652.	6.5	20
3	Development of an inexpensive Raman-compatible substrate for the construction of a microarray screening platform. Analyst, The, 2020, 145, 7030-7039.	3.5	2
4	Exploring the maturation of a monocytic cell line using self-organizing maps of single-cell Raman spectra. Biointerphases, 2020, 15, 041010.	1.6	3
5	Correlated Imaging of Topology and Composition Within Phase-separated Supported Lipid Membranes. Microscopy and Microanalysis, 2020, 26, 1602-1603.	0.4	0
6	Measurement of Absolute Concentration at the Subcellular Scale. ACS Nano, 2020, 14, 6414-6419.	14.6	5
7	Probing Lipid Accumulation in Organelles of Interest Using Secondary Ion Mass Spectrometry and Complementary Imaging Techniques. Microscopy and Microanalysis, 2020, 26, 2512-2513.	0.4	1
8	9. Imaging the distributions of lipids and proteins in the plasma membrane with high-resolution secondary ion mass spectrometry. , 2019, , 287-322.		4
9	Observation of endoplasmic reticulum tubules via TOF-SIMS tandem mass spectrometry imaging of transfected cells. Biointerphases, 2018, 13, 03B409.	1.6	20
10	Visualizing Intrapopulation Hematopoietic Cell Heterogeneity with Self-Organizing Maps of SIMS Data. Tissue Engineering - Part C: Methods, 2018, 24, 322-330.	2.1	6
11	Cholesterol is enriched in the sphingolipid patches on the substrate near nonpolarized MDCK cells, but not in the sphingolipid domains in their plasma membranes. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2004-2011.	2.6	10
12	Imaging the Endoplasmic Reticulum within Individual Mammalian Cells with Secondary Ion Mass Spectrometry. Microscopy and Microanalysis, 2018, 24, 1022-1023.	0.4	0
13	Tracing Hematopoietic Progenitor Cell Neutrophilic Differentiation via Raman Spectroscopy. Bioconjugate Chemistry, 2018, 29, 3121-3128.	3.6	16
14	Three-dimensional imaging of cholesterol and sphingolipids within a Madin-Darby canine kidney cell. Biointerphases, 2016, 11, 02A309.	1.6	26
15	The importance of selecting a proper biological milieu for protein corona analysis in vitro: Human plasma versus human serum. International Journal of Biochemistry and Cell Biology, 2016, 75, 188-195.	2.8	112
16	Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials, 2016, 75, 295-304.	11.4	256
17	Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It. Frontiers in Cell and Developmental Biology, 2016, 4, 154.	3.7	76
18	High-Resolution Imaging of the Distributions of Cholesterol, Sphingolipids, and Specific Proteins in the Plasma Membrane with Secondary Ion Mass Spectrometry. Microscopy and Microanalysis, 2015, 21, 2397-2398.	0.4	1

MARY L KRAFT

#	Article	IF	CITATIONS
19	Hemagglutinin Clusters in the Plasma Membrane Are Not Enriched with Cholesterol and Sphingolipids. Biophysical Journal, 2015, 108, 1652-1659.	0.5	48
20	Identifying States along the Hematopoietic Stem Cell Differentiation Hierarchy with Single Cell Specificity via Raman Spectroscopy. Analytical Chemistry, 2015, 87, 11317-11324.	6.5	31
21	Secondary ion mass spectrometry and Raman spectroscopy for tissue engineering applications. Current Opinion in Biotechnology, 2015, 31, 108-116.	6.6	20
22	Identifying the lineages of individual cells in cocultures by multivariate analysis of Raman spectra. Analyst, The, 2014, 139, 2177-2185.	3.5	13
23	Imaging lipids with secondary ion mass spectrometry. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1108-1119.	2.4	100
24	Sphingolipid Domains in the Plasma Membranes of Fibroblasts Are Not Enriched with Cholesterol. Journal of Biological Chemistry, 2013, 288, 16855-16861.	3.4	129
25	Plasma membrane organization and function: moving past lipid rafts. Molecular Biology of the Cell, 2013, 24, 2765-2768.	2.1	152
26	Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E613-22.	7.1	184
27	Protein corona significantly reduces active targeting yield. Chemical Communications, 2013, 49, 2557.	4.1	321
28	Secondary Ion Mass Spectrometry Imaging of Biological Membranes at High Spatial Resolution. Methods in Molecular Biology, 2013, 950, 483-501.	0.9	26
29	Quantifying the Molar Percentages of Cholesterol in Supported Lipid Membranes by Time-of-Flight Secondary Ion Mass Spectrometry and Multivariate Analysis. Analytical Chemistry, 2013, 85, 91-97.	6.5	10
30	A new, long-wavelength borondipyrromethene sphingosine for studying sphingolipid dynamics in live cells. Journal of Lipid Research, 2013, 54, 265-275.	4.2	19
31	Transport and trafficking of fluorescent sphingosine, sphingolipids, and their metabolites. FASEB Journal, 2013, 27, 814.6.	O.5	Ο
32	Fluorinated Colloidal Gold Immunolabels for Imaging Select Proteins in Parallel with Lipids Using High-Resolution Secondary Ion Mass Spectrometry. Bioconjugate Chemistry, 2012, 23, 450-460.	3.6	36
33	Identifying Differentiation Stage of Individual Primary Hematopoietic Cells from Mouse Bone Marrow by Multivariate Analysis of TOF-Secondary Ion Mass Spectrometry Data. Analytical Chemistry, 2012, 84, 4307-4313.	6.5	22
34	Identification of a lipidâ€related peak set to enhance the interpretation of TOFâ€SIMS data from model and cellular membranes. Surface and Interface Analysis, 2012, 44, 322-333.	1.8	28
35	Timeâ€dependent changes in long range sphingolipid organization revealed by highâ€resolution secondary ion mass spectrometry. FASEB Journal, 2012, 26, 987.1.	0.5	0
36	Identification of the Differentiation Status of Individual Hematopoietic Cells from Mouse Bone Marrow using Secondary Ion Mass Spectrometry. FASEB Journal, 2012, 26, 579.5.	0.5	0

Mary L Kraft

#	Article	IF	CITATIONS
37	Chemical Imaging of Cholesterol and Sphingolipid Distribution in the Plasma Membranes of Fibroblast Cells. FASEB Journal, 2012, 26, 601.5.	0.5	0
38	Long, Saturated Chains: Tasty Domains for Kinases of Insulin Resistance. Developmental Cell, 2011, 21, 604-606.	7.0	2
39	Correlated AFM and NanoSIMS imaging to probe cholesterol-induced changes in phase behavior and non-ideal mixing in ternary lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 307-315.	2.6	42
40	Discriminating and Imaging Different Phosphatidylcholine Species within Phase-Separated Model Membranes by Principal Component Analysis of TOF-Secondary Ion Mass Spectrometry Images. Analytical Chemistry, 2010, 82, 10006-10014.	6.5	40
41	Advances in Imaging Secondary Ion Mass Spectrometry for Biological Samples. Annual Review of Biophysics, 2009, 38, 53-74.	10.0	281
42	Synchronized Self-Assembly. Science, 2008, 320, 620-621.	12.6	50
43	Quantitative analysis of supported membrane composition using the NanoSIMS. Applied Surface Science, 2006, 252, 6950-6956.	6.1	33
44	Phase Separation of Lipid Membranes Analyzed with High-Resolution Secondary Ion Mass Spectrometry. Science, 2006, 313, 1948-1951.	12.6	254
45	General Method for Modification of Liposomes for Encoded Assembly on Supported Bilayers. Journal of the American Chemical Society, 2005, 127, 1356-1357.	13.7	146
46	Supported Membrane Composition Analysis by Secondary Ion Mass Spectrometry with High Lateral Resolution. Biophysical Journal, 2005, 88, 2965-2975.	0.5	49
47	Swelling Kinetics of Disulfide Cross-Linked Microgels. Macromolecules, 2003, 36, 3960-3966.	4.8	68