Carlos Rossa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5209677/publications.pdf Version: 2024-02-01

CADIOS ROSSA

#	Article	IF	CITATIONS
1	A Discrete Non-Linear Series Elastic Actuator for Active Ankle-Foot Orthoses. IEEE Robotics and Automation Letters, 2022, 7, 6211-6217.	3.3	9
2	Preoperative Virtual Reality Surgical Rehearsal of Renal Access during Percutaneous Nephrolithotomy: A Pilot Study. Electronics (Switzerland), 2022, 11, 1562.	1.8	5
3	Pulse Compression Favourable Thermal Wave Imaging Approach for Estimation of Osteoporosis: A Numerical Study. , 2022, , .		0
4	Robotic Rehabilitation and Assistance for Individuals With Movement Disorders Based on a Kinematic Model of the Upper Limb. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 190-203.	2.1	8
5	Sonographic Diagnosis of COVID-19: A Review of Image Processing for Lung Ultrasound. Frontiers in Big Data, 2021, 4, 612561.	1.8	21
6	Multi-objective gain optimizer for a multi-input active disturbance rejection controller: Application to series elastic actuators. Control Engineering Practice, 2021, 109, 104733.	3.2	10
7	Constrained haptic-guided shared control for collaborative human–robot percutaneous nephrolithotomy training. Mechatronics, 2021, 75, 102528.	2.0	6
8	Electrical Impedance Tomography for Robot-Aided Internal Radiation Therapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 698038.	2.0	3
9	Electric impedance spectroscopy feature extraction for tissue classification with electrode embedded surgical needles through a modified forward stepwise method. Computers in Biology and Medicine, 2021, 135, 104522.	3.9	8
10	Multiobjective Trajectory Tracking of a Flexible Tool During Robotic Percutaneous Nephrolithotomy. IEEE Robotics and Automation Letters, 2021, 6, 8110-8117.	3.3	3
11	Nine Degree-of-Freedom Kinematic Modeling of the Upper-Limb Complex for Constrained Workspace Evaluation. Journal of Biomechanical Engineering, 2021, 143, .	0.6	3
12	Development of a tissue discrimination electrode embedded surgical needle using vibro-tactile feedback derived from electric impedance spectroscopy. Medical and Biological Engineering and Computing, 2021, , 1.	1.6	3
13	Reference Point-Based Particle Sub-Swarm Optimization. , 2021, , .		0
14	An Extended Parameter Estimation Disturbance Observer for an Active Ankle Foot Orthosis. , 2021, , .		1
15	Multiobjective Path Planning for Autonomous Robotic Percutaneous Nephrolithotomy via Discrete B-spline Interpolation. , 2021, , .		0
16	Backlash-Compensated Active Disturbance Rejection Control of Nonlinear Multi-Input Series Elastic Actuators. , 2020, , .		1
17	Haptic Training Simulation. Frontiers in Virtual Reality, 2020, 1, .	2.5	21
18	Design and Control of a 3 Degree-of-Freedom Parallel Passive Haptic Device. IEEE Transactions on Haptics, 2020, 13, 720-732.	1.8	7

CARLOS ROSSA

#	Article	IF	CITATIONS
19	Using Potential Field Function With a Velocity Field Controller to Learn and Reproduce the Therapist's Assistance in Robot-Assisted Rehabilitation. IEEE/ASME Transactions on Mechatronics, 2020, 25, 1622-1633.	3.7	6
20	Impact of Kinematic Structure on the Force Displayability of Planar Passive Haptic Devices. IEEE Transactions on Haptics, 2020, 13, 219-225.	1.8	2
21	Tissue Discrimination Through Force-Feedback from Impedance Spectroscopy in Robot-Assisted Surgery. Lecture Notes in Computer Science, 2020, , 274-285.	1.0	3
22	Tissue Discrimination from Impedance Spectroscopy as a Multi-objective Optimisation Problem with Weighted NaÃ ⁻ ve Bayes Classification. , 2020, , .		1
23	Electrical Impedance Tomography using Differential Evolution integrated with a Modified Newton Raphson Algorithm. , 2020, , .		2
24	An Integrator-Backstepping Control Approach for Three-Dimensional Needle Steering. IEEE/ASME Transactions on Mechatronics, 2019, 24, 2204-2214.	3.7	5
25	Differentially-Clutched Series Elastic Actuator for Robot-Aided Musculoskeletal Rehabilitation. , 2019, , .		12
26	Multi-Objective Gain Optimizer for an Active Disturbance Rejection Controller. , 2019, , .		1
27	On the Feasibility of Multi-Degree-of-Freedom Haptic Devices Using Passive Actuators. , 2019, , .		3
28	Geometric control of 3D needle steering in soft-tissue. Automatica, 2019, 101, 36-43.	3.0	8
29	Event-Triggered 3D Needle Control Using a Reduced-Order Computationally Efficient Bicycle Model in a Constrained Optimization Framework. Journal of Medical Robotics Research, 2019, 04, 1842004.	1.0	4
30	Evaluation of a Virtual Reality Percutaneous Nephrolithotomy (PCNL) Surgical Simulator. Frontiers in Robotics and AI, 2019, 6, 145.	2.0	21
31	Robotic-Assisted Needle Steering Around Anatomical Obstacles Using Notched Steerable Needles. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 1917-1928.	3.9	21
32	Surgeon-in-the-Loop 3-D Needle Steering Through Ultrasound-Guided Feedback Control. IEEE Robotics and Automation Letters, 2018, 3, 469-476.	3.3	6
33	Intraoperative Tissue Young's Modulus Identification During Needle Insertion Using a Laterally Actuated Needle. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 371-381.	2.4	9
34	Brachytherapy Needle Steering Guidance Using Image Overlay. Advances in Computational Intelligence and Robotics Book Series, 2018, , 191-204.	0.4	3
35	A Hand-Held Assistant for Semiautomated Percutaneous Needle Steering. IEEE Transactions on Biomedical Engineering, 2017, 64, 637-648.	2.5	26
36	Sliding-based image-guided 3D needle steering in soft tissue. Control Engineering Practice, 2017, 63, 34-43.	3.2	24

CARLOS ROSSA

#	Article	IF	CITATIONS
37	Issues in closed-loop needle steering. Control Engineering Practice, 2017, 62, 55-69.	3.2	78
38	A data-driven soft sensor for needle deflection in heterogeneous tissue using just-in-time modelling. Medical and Biological Engineering and Computing, 2017, 55, 1401-1414.	1.6	17
39	Deflection modeling for a needle actuated by lateral force and axial rotation during insertion in soft phantom tissue. Mechatronics, 2017, 48, 42-53.	2.0	13
40	Feedback-linearization-based 3D needle steering in a Frenet-Serret frame using a reduced order bicycle model. , 2017, , .		7
41	Semi-Automated Needle Steering in Biological Tissue Using an Ultrasound-Based Deflection Predictor. Annals of Biomedical Engineering, 2017, 45, 924-938.	1.3	9
42	Nonlinear workspace mapping for telerobotic assistance of upper limb in patients with severe movement disorders. , 2017, , .		6
43	Ultrasound-Guided Model Predictive Control of Needle Steering in Biological Tissue. Journal of Medical Robotics Research, 2016, 01, 1640007.	1.0	30
44	A Two-Body Rigid/Flexible Model of Needle Steering Dynamics in Soft Tissue. IEEE/ASME Transactions on Mechatronics, 2016, 21, 2352-2364.	3.7	52
45	Constrained optimal control of needle deflection for semi-manual steering. , 2016, , .		6
46	Needle path control during insertion in soft tissue using a force-sensor-based deflection estimator. , 2016, , .		4
47	Introducing notched flexible needles with increased deflection curvature in soft tissue. , 2016, , .		7
48	Real-time needle shape prediction in soft-tissue based on image segmentation and particle filtering. , 2016, , .		12
49	An integrator-backstepping control approach for out-of-plane needle deflection minimization. , 2016, ,		4
50	Partial estimation of needle tip orientation in generalized coordinates in ultrasound image-guided needle insertion. , 2016, , .		8
51	A Real-Time Estimator for Needle Deflection During Insertion Into Soft Tissue Based on Adaptive Modeling of Needle–Tissue Interactions. IEEE/ASME Transactions on Mechatronics, 2016, 21, 2601-2612.	3.7	20
52	Needle Tracking and Deflection Prediction for Robot-Assisted Needle Insertion Using 2D Ultrasound Images. Journal of Medical Robotics Research, 2016, 01, 1640001.	1.0	18
53	Estimating needle tip deflection in biological tissue from a single transverse ultrasound image: application to brachytherapy. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 1347-1359.	1.7	14
54	Three-Dimensional Needle Shape Estimation in TRUS-Guided Prostate Brachytherapy Using 2-D Ultrasound Images. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 1621-1631.	3.9	18

CARLOS ROSSA

#	Article	IF	CITATIONS
55	Adaptive Quasi-Static Modelling of Needle Deflection During Steering in Soft Tissue. IEEE Robotics and Automation Letters, 2016, 1, 916-923.	3.3	23
56	Sliding-Based Switching Control for Image-Guided Needle Steering in Soft Tissue. IEEE Robotics and Automation Letters, 2016, 1, 860-867.	3.3	23
57	Mechanics of Tissue Cutting During Needle Insertion in Biological Tissue. IEEE Robotics and Automation Letters, 2016, 1, 800-807.	3.3	52
58	Multiactuator Haptic Feedback on the Wrist for Needle Steering Guidance in Brachytherapy. IEEE Robotics and Automation Letters, 2016, 1, 852-859.	3.3	34
59	Extended bicycle model for needle steering in soft tissue. , 2015, , .		10
60	3D shape visualization of curved needles in tissue from 2D ultrasound images using RANSAC. , 2015, , .		18
61	A virtual sensor for needle deflection estimation during soft-tissue needle insertion. , 2015, , .		11
62	Needle shape estimation in soft tissue based on partial ultrasound image observation. , 2015, , .		5
63	A mechanics-based model for simulation and control of flexible needle insertion in soft tissue. , 2015, , \cdot		35
64	Design and Control of a Dual Unidirectional Brake Hybrid Actuation System for Haptic Devices. IEEE Transactions on Haptics, 2014, 7, 442-453.	1.8	20
65	Development of a multilayered wide-ranged torque magnetorheological brake. Smart Materials and Structures, 2014, 23, 025028.	1.8	30
66	Design Considerations for Magnetorheological Brakes. IEEE/ASME Transactions on Mechatronics, 2014, 19, 1669-1680.	3.7	65
67	On a Novel Torque Detection Technique for Magnetorheological Actuators. IEEE Sensors Journal, 2014, 14, 1223-1231.	2.4	6
68	Perceptual Evaluation of the Passive/Active Torque and Stiffness Asymmetry of a Hybrid Haptic Device. Lecture Notes in Computer Science, 2014, , 55-60.	1.0	0
69	Stable haptic interaction using passive and active actuators. , 2013, , .		8
70	Magnetic flux analysis on magnetorheological actuators can detect external force variation. , 2012, , .		2
71	A new hybrid actuator approach for force-feedback devices. , 2012, , .		11
72	Interaction Power Flow Based Control of a 1-DOF Hybrid Haptic Interface. Lecture Notes in Computer Science, 2012, , 151-156.	1.0	8