

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5209506/publications.pdf Version: 2024-02-01

Frilin

#	Article	IF	CITATIONS
1	Targeted delivery of hemostats to complex bleeding wounds with magnetic guidance for instant hemostasis. Chemical Engineering Journal, 2022, 427, 130916.	6.6	25
2	Microcluster colloidosomes for hemostat delivery into complex wounds: A platform inspired by the attack action of torpedoes. Bioactive Materials, 2022, 16, 372-387.	8.6	8
3	Revealing the Role of d Orbitals of Transition-Metal-Doped Titanium Oxide on High-Efficient Oxygen Reduction. CCS Chemistry, 2021, 3, 180-188.	4.6	18
4	Chestnut-like macro-acanthosphere triggered hemostasis: a featured mechanism based on puncturing red blood cells. Nanoscale, 2021, 13, 9843-9852.	2.8	6
5	A cellulose/Konjac glucomannan–based macroporous antibacterial wound dressing with synergistic and complementary effects for accelerated wound healing. Cellulose, 2021, 28, 5591-5609.	2.4	24
6	Biogenetic Acellular Dermal Matrix Maintaining Rich Interconnected Microchannels for Accelerated Tissue Amendment. ACS Applied Materials & Interfaces, 2021, 13, 16048-16061.	4.0	16
7	Magnetically Guided Nanoworms for Precise Delivery to Enhance In Situ Production of Nitric Oxide to Combat Focal Bacterial Infection In Vivo. ACS Applied Materials & Interfaces, 2021, 13, 22225-22239.	4.0	26
8	Magnetic field-mediated Janus particles with sustained driving capability for severe bleeding control in perforating and inflected wounds. Bioactive Materials, 2021, 6, 4625-4639.	8.6	14
9	Recent advances in materials for hemostatic management. Biomaterials Science, 2021, 9, 7343-7378.	2.6	40
10	Minimizing antibiotic dosage through in situ formation of gold nanoparticles across antibacterial wound dressings: A facile approach using silk fabric as the base substrate. Journal of Cleaner Production, 2020, 243, 118604.	4.6	38
11	Improvement of platelet aggregation and rapid induction of hemostasis in chitosan dressing using silver nanoparticles. Cellulose, 2020, 27, 385-400.	2.4	31
12	Puff pastry-like chitosan/konjac glucomannan matrix with thrombin-occupied microporous starch particles as a composite for hemostasis. Carbohydrate Polymers, 2020, 232, 115814.	5.1	46
13	Selfâ€Propelling Janus Particles for Hemostasis in Perforating and Irregular Wounds with Massive Hemorrhage. Advanced Functional Materials, 2020, 30, 2004153.	7.8	62
14	A self-adapting hydrogel based on chitosan/oxidized konjac glucomannan/AgNPs for repairing irregular wounds. Biomaterials Science, 2020, 8, 1910-1922.	2.6	62
15	Protein-reduced gold nanoparticles mixed with gentamicin sulfate and loaded into konjac/gelatin sponge heal wounds and kill drug-resistant bacteria. International Journal of Biological Macromolecules, 2020, 148, 921-931.	3.6	55
16	Biodegradable Microporous Starch with Assembled Thrombin for Rapid Induction of Hemostasis. ACS Sustainable Chemistry and Engineering, 2019, 7, 9121-9132.	3.2	45
17	Silver nanoparticles in situ synthesized by polysaccharides from Sanghuangporus sanghuang and composites with chitosan to prepare scaffolds for the regeneration of infected full-thickness skin defects. International Journal of Biological Macromolecules, 2019, 125, 392-403.	3.6	39
18	A novel wound dressing based on a Konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydrate Polymers, 2018, 183, 70-80.	5.1	141

Fei Lu

#	Article	IF	CITATIONS
19	Novel strategy for obtaining uniformly dispersed silver nanoparticles on soluble cotton wound dressing through carboxymethylation and in-situ reduction: antimicrobial activity and histological assessment in animal model. Cellulose, 2018, 25, 5361-5376.	2.4	22
20	Self-assembly of natural protein and imidazole molecules on gold nanoparticles: Applications in wound healing against multi-drug resistant bacteria. International Journal of Biological Macromolecules, 2018, 119, 505-516.	3.6	24
21	Silver Inlaid with Gold Nanoparticles: Enhanced Antibacterial Ability Coupled with the Ability to Visualize Antibacterial Efficacy. ACS Sustainable Chemistry and Engineering, 2018, 6, 9813-9821.	3.2	40
22	Imidazole-molecule-capped chitosan–gold nanocomposites with enhanced antimicrobial activity for treating biofilm-related infections. Journal of Colloid and Interface Science, 2018, 531, 269-281.	5.0	41
23	An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing. Carbohydrate Polymers, 2018, 201, 522-531.	5.1	251
24	Healing of skin wounds using a new cocoon scaffold loaded with platelet-rich or platelet-poor plasma. RSC Advances, 2017, 7, 6474-6485.	1.7	16
25	Cellobiose as a model compound for cellulose to study the interactions in cellulose/lithium chloride/N-methyl-2-pyrrolidone systems. Cellulose, 2017, 24, 1621-1629.	2.4	20
26	Accelerated wound-healing capabilities of a dressing fabricated from silkworm cocoon. International Journal of Biological Macromolecules, 2017, 102, 901-913.	3.6	30
27	In situ reduction of silver nanoparticles by chitosan-l-glutamic acid/hyaluronic acid: Enhancing antimicrobial and wound-healing activity. Carbohydrate Polymers, 2017, 173, 556-565.	5.1	91
28	In situ assembly of Ag nanoparticles (AgNPs) on porous silkworm cocoon-based wound film: enhanced antimicrobial and wound healing activity. Scientific Reports, 2017, 7, 2107.	1.6	46
29	Properties of a new hemostatic gauze prepared with <i>in situ</i> thrombin induction. Biomedical Physics and Engineering Express, 2017, 3, 015001.	0.6	5
30	Silver Inlaid with Gold Nanoparticle/Chitosan Wound Dressing Enhances Antibacterial Activity and Porosity, and Promotes Wound Healing. Biomacromolecules, 2017, 18, 3766-3775.	2.6	149
31	Preparation of a partially carboxymethylated cotton gauze and study of its hemostatic properties. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 407-416.	1.5	16
32	Preparation and characterization of N -chitosan as a wound healing accelerator. International Journal of Biological Macromolecules, 2016, 93, 1295-1303.	3.6	59
33	Extensional rheology of cellulose/NaOH/urea/H2O solutions. Cellulose, 2016, 23, 2877-2885.	2.4	6
34	Hierarchical porous structures in cellulose: NMR relaxometry approach. Polymer, 2016, 98, 237-243.	1.8	29
35	Healing of skin wounds with a chitosan–gelatin sponge loaded with tannins and platelet-rich plasma. International Journal of Biological Macromolecules, 2016, 82, 884-891.	3.6	116
36	Influence of temperature on the solution rheology of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethyl sulfoxide. Cellulose, 2015, 22, 3077-3087.	2.4	23

Fei Lu

#	Article	IF	CITATIONS
37	Chitosan/gelatin composite sponge is an absorbable surgical hemostatic agent. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1026-1034.	2.5	175
38	Melt blowing of ionic liquid-based cellulose solutions. Fibers and Polymers, 2014, 15, 291-296.	1.1	8
39	Rheological behaviors of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethylsulfoxide. Carbohydrate Polymers, 2014, 110, 292-297.	5.1	40
40	Flow behavior and linear viscoelasticity of cellulose 1-allyl-3-methylimidazolium formate solutions. Carbohydrate Polymers, 2014, 99, 132-139.	5.1	18
41	Viscoelasticity and rheology in the regimes from dilute to concentrated in cellulose 1-ethyl-3-methylimidazolium acetate solutions. Cellulose, 2013, 20, 1343-1352.	2.4	48
42	Rheological characterization of concentrated cellulose solutions in 1â€allylâ€3â€methylimidazolium chloride. Journal of Applied Polymer Science, 2012, 124, 3419-3425.	1.3	41
43	Nucleation and Growth of Glycine Crystals with Controllable Sizes and Polymorphs on Langmuir–Blodgett Films. Crystal Growth and Design, 2007, 7, 2654-2657.	1.4	21