Deborah M Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5209266/publications.pdf Version: 2024-02-01

		623734	454955
32	1,051	14	30
papers	citations	h-index	g-index
32	32	32	731
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Modification of the Pulmonary MyD88 Inflammatory Response Underlies the Role of the Yersinia pestis Pigmentation Locus in Primary Pneumonic Plague. Infection and Immunity, 2021, 89, .	2.2	2
2	Interrelationship of soil moisture and temperature to sylvatic plague cycle among prairie dogs in the Western United States. Integrative Zoology, 2021, 16, 852-867.	2.6	3
3	Activation of Heme Oxygenase Expression by Cobalt Protoporphyrin Treatment Prevents Pneumonic Plague Caused by Inhalation of <i>Yersinia pestis</i> . Antimicrobial Agents and Chemotherapy, 2020, 64,	3.2	5
4	Shift from primary pneumonic to secondary septicemic plague by decreasing the volume of intranasal challenge with Yersinia pestis in the murine model. PLoS ONE, 2019, 14, e0217440.	2.5	7
5	Drosophila as a Model for Understanding the Insect Host of Yersinia pestis. Methods in Molecular Biology, 2019, 2010, 167-178.	0.9	4
6	Standardized Method for Aerosol Challenge of Rodents with Yersinia pestis for Modeling Primary Pneumonic Plague. Methods in Molecular Biology, 2019, 2010, 29-39.	0.9	2
7	Yersinia pestis Exploits Early Activation of MyD88 for Growth in the Lungs during Pneumonic Plague. Infection and Immunity, 2019, 87, .	2.2	8
8	Usurping bacterial virulence factors as self-delivery vehicles for therapeutic use. Virulence, 2017, 8, 1072-1074.	4.4	1
9	Induction of Type I Interferon through a Noncanonical Toll-Like Receptor 7 Pathway during Yersinia pestis Infection. Infection and Immunity, 2017, 85, .	2.2	10
10	Fractionation Techniques to Examine Effector Translocation. Methods in Molecular Biology, 2017, 1531, 101-109.	0.9	0
11	Resistance to Innate Immunity Contributes to Colonization of the Insect Gut by Yersinia pestis. PLoS ONE, 2015, 10, e0133318.	2.5	17
12	Bacterial programming of host responses: coordination between type I interferon and cell death. Frontiers in Microbiology, 2014, 5, 545.	3.5	10
13	Remote monitoring of the progression of primary pneumonic plague in Brown Norway rats in high-capacity, high-containment housing. Pathogens and Disease, 2014, 71, 265-275.	2.0	6
14	Yersinia Activation of Type I Interferon. , 2014, , 87-96.		0
15	Imaging Early Pathogenesis of Bubonic Plague: Are Neutrophils Commandeered for Lymphatic Transport of Bacteria?. MBio, 2013, 4, e00837-13.	4.1	2
16	Early Apoptosis of Macrophages Modulated by Injection of Yersinia pestis YopK Promotes Progression of Primary Pneumonic Plague. PLoS Pathogens, 2013, 9, e1003324.	4.7	40
17	Opposing Roles for Interferon Regulatory Factor-3 (IRF-3) and Type I Interferon Signaling during Plague. PLoS Pathogens, 2012, 8, e1002817.	4.7	25
18	Phagocytes and Humoral Immunity to Pneumonic Plague. Advances in Experimental Medicine and Biology, 2012, 954, 165-171.	1.6	2

Deborah M Anderson

#	Article	IF	CITATIONS
19	Host stress and immune responses during aerosol challenge of Brown Norway rats with Yersinia pestis. Frontiers in Cellular and Infection Microbiology, 2012, 2, 147.	3.9	7
20	Chemokine Receptor CXCR2 Mediates Bacterial Clearance Rather Than Neutrophil Recruitment in a Murine Model of Pneumonic Plague. American Journal of Pathology, 2011, 178, 1190-1200.	3.8	28
21	Expression hierarchy in the <i>Yersinia</i> type III secretion system established through YopD recognition of RNA. Molecular Microbiology, 2011, 80, 966-980.	2.5	44
22	Novel Genetic Tools for Diaminopimelic Acid Selection in Virulence Studies of Yersinia pestis. PLoS ONE, 2011, 6, e17352.	2.5	10
23	Absence of Inflammation and Pneumonia during Infection with Nonpigmented <i>Yersinia pestis</i> Reveals a New Role for the <i>pgm</i> Locus in Pathogenesis. Infection and Immunity, 2010, 78, 220-230.	2.2	43
24	Dual-Function Antibodies to <i>Yersinia pestis</i> LcrV Required for Pulmonary Clearance of Plague. Vaccine Journal, 2009, 16, 1720-1727.	3.1	18
25	Pneumonic Plague Pathogenesis and Immunity in Brown Norway Rats. American Journal of Pathology, 2009, 174, 910-921.	3.8	41
26	Transposon mutagenesis of Bacillus anthracis strain Sterne using Bursa aurealis. Plasmid, 2006, 56, 74-77.	1.4	36
27	Immunogenicity and Protective Immunity against Bubonic Plague and Pneumonic Plague by Immunization of Mice with the Recombinant V10 Antigen, a Variant of LcrV. Infection and Immunity, 2006, 74, 4910-4914.	2.2	56
28	YopD and LcrH Regulate Expression of <i>Yersinia enterocolitica</i> YopQ by a Posttranscriptional Mechanism and Bind to <i>yopQ</i> RNA. Journal of Bacteriology, 2002, 184, 1287-1295.	2.2	91
29	Yersinia enterocolitica type III secretion: an mRNA signal that couples translation and secretion of YopQ. Molecular Microbiology, 1999, 31, 1139-1148.	2.5	143
30	Type III machines of Gram-negative pathogens: injecting virulence factors into host cells and more. Current Opinion in Microbiology, 1999, 2, 18-24.	5.1	53
31	Targeting ofYersiniaYop proteins into the cytosol of HeLa cells: oneâ€step translocation of YopE across bacterial and eukaryotic membranes is dependent on SycE chaperone. Molecular Microbiology, 1998, 28, 593-601.	2.5	143
32	Two independent type III secretion mechanisms for YopE in Yersinia enterocolitica. Molecular Microbiology, 1997, 24, 757-765.	2.5	194