Danilo Brandao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5209165/publications.pdf

Version: 2024-02-01

471509 552781 88 888 17 26 citations h-index g-index papers 90 90 90 716 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Control Of Utility Interfaces In Low-voltage Microgrids. Eletrônica De Potência, 2024, 20, 373-382.	0.1	6
2	Compensação Ativa Paralela Baseada na Teoria de Potência Conservativa. Eletrônica De Potência, 2024, 17, 409-418.	0.1	1
3	Resistive Shaping of Interconnected Low-Voltage Microgrids Operating Under Distorted Voltages. IEEE Transactions on Industrial Electronics, 2022, 69, 9075-9086.	7.9	3
4	Self-adaptive control for grid-forming converter with smooth transition between microgrid operating modes. International Journal of Electrical Power and Energy Systems, 2022, 135, 107479.	5 . 5	20
5	Integrated Local and Coordinated Overvoltage Control to Increase Energy Feed-In and Expand DER Participation in Low-Voltage Networks. IEEE Transactions on Sustainable Energy, 2022, 13, 1049-1061.	8.8	12
6	Sufficient Conditions for Robust Frequency Stability of AC Power Systems. IEEE Transactions on Power Systems, 2021, 36, 2684-2692.	6. 5	21
7	Model-Free Energy Management System for Hybrid Alternating Current/Direct Current Microgrids. IEEE Transactions on Industrial Electronics, 2021, 68, 3982-3991.	7.9	19
8	Multifunctional dispatchable microgrids. Applied Energy, 2021, 282, 116165.	10.1	8
9	Positive–Negative Sequence Synchronverter for Unbalanced Voltage in AC Grids. Journal of Control, Automation and Electrical Systems, 2021, 32, 711-720.	2.0	1
10	Active Power Filter Pre-Selection Tool to Enhance the Power Quality in Oil and Gas Platforms. Energies, 2021, 14, 1024.	3.1	7
11	Optimized Exploitation of Ancillary Services: Compensation of Reactive, Unbalance and Harmonic Currents Based on Particle Swarm Optimization. IEEE Latin America Transactions, 2021, 19, 314-325.	1.6	7
12	Parameter Selection for the Virtual Oscillator Control Applied to Microgrids. Energies, 2021, 14, 1818.	3.1	3
13	Wear-out prediction of grid-following converters for two-phase three-wire isolated ac power grids. , 2021, , .		O
14	Coordinated Volt-Var Control in Microgrids. , 2021, , .		1
15	Dynamic Converter Capacity Allocation for Multifunctional Energy Storage Systems in Oil and Gas Applications. , 2021, , .		2
16	Comparison of Advanced Charge Strategies for Modular Cascaded Battery Chargers. Energies, 2021, 14, 3361.	3.1	4
17	Distributed Control Strategy for Low-Voltage Three-Phase Four-Wire Microgrids: Consensus Power-Based Control. IEEE Transactions on Smart Grid, 2021, 12, 3215-3231.	9.0	14
18	Model-Free Power Control for Low-Voltage AC Dispatchable Microgrids with Multiple Points of Connection. Energies, 2021, 14, 6390.	3.1	7

#	Article	IF	Citations
19	Control Strategies for Multifunctional Active Front-End Converter in Oil and Gas Platforms. , 2021, , .		O
20	Analysis of Stationary- and Synchronous-Reference Frames for Three-Phase Three-Wire Grid-Connected Converter AC Current Regulators. Energies, 2021, 14, 8348.	3.1	5
21	Coordinated Control of Distributed Three- and Single-Phase Inverters Connected to Three-Phase Three-Wire Microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 3861-3877.	5.4	25
22	Optimal Multiobjective Control of Low-Voltage AC Microgrids: Power Flow Regulation and Compensation of Reactive Power and Unbalance. IEEE Transactions on Smart Grid, 2020, 11, 1239-1252.	9.0	35
23	A selective harmonic compensation and power control approach exploiting distributed electronic converters in microgrids. International Journal of Electrical Power and Energy Systems, 2020, 115, 105452.	5.5	22
24	Power- and Current-Based Control of Distributed Inverters in Low-Voltage Microgrids: Considerations in Relation to Classic Droop Control., 2020,,.		2
25	Decentralized Control of Voltage- and Current-Controlled Converters Based on AC Bus Signaling for Autonomous Microgrids. IEEE Access, 2020, 8, 202075-202089.	4.2	10
26	Preference cone based multi-objective evolutionary algorithm applied to optimal management of distributed energy resources in microgrids. Applied Energy, 2020, 274, 115326.	10.1	19
27	Three-Dimensional Representation of Electrical Circuit Quantities. IEEE Transactions on Power Systems, 2020, 35, 3258-3261.	6.5	0
28	A fault-tolerant grid-forming converter applied to AC microgrids. International Journal of Electrical Power and Energy Systems, 2020, 121, 106072.	5.5	15
29	Distributed selective harmonic mitigation and decoupled unbalance compensation by coordinated inverters in three-phase four-wire low-voltage networks. Electric Power Systems Research, 2020, 186, 106407.	3.6	11
30	Off-Road Vehicle Hybridization Methodology Applied to a Tractor Backhoe Loader., 2019,,.		10
31	Reactive Power Support in Medium Voltage Networks by Coordinated Control of Distributed Generators in Dispatchable Low-Voltage Microgrid. , 2019, , .		9
32	Smart Load Management with Energy Storage for Power Quality Enhancement in Wind-Powered Oil and Gas Applications. Energies, 2019, 12, 2985.	3.1	17
33	Coordinated Control of Parallel Power Conditioners Synthesizing Resistive Loads in Single-Phase AC Microgrids. , 2019, , .		2
34	Comparison among Two-Phase Three-Wire AC Off-Grid Power Systems. , 2019, , .		2
35	Harmonic Compensation Strategies Applied to Multifunctional Photovoltaic Inverters. , 2019, , .		0
36	SmartBattery: An Active-Battery Solution for Energy Storage System. , 2019, , .		3

#	Article	IF	Citations
37	Selective Power Conditioning in Two-Phase Three-Wire Systems Based on the Conservative Power Theory. , 2019, , .		4
38	Considerations on Communication Infrastructures for Cooperative Operation of Smart Inverters. , 2019, , .		4
39	Power quality enhancement by SiC Active Power Filters in Oil and Gas Platforms. , 2019, , .		3
40	Active and Reactive Power Injection Strategies for Three-Phase Four-Wire Inverters During Symmetrical/Asymmetrical Voltage Sags. IEEE Transactions on Industry Applications, 2019, 55, 2347-2355.	4.9	37
41	Unbalanced Load Compensation by Power-Based Control in the Synchronous Reference Frame. , 2019, , .		1
42	Selective output impedance based control for grid-connected inverters., 2019,,.		0
43	Harmonic Compensation Using a Series Hybrid Filter in a Centralized AC Microgrid. Journal of Control, Automation and Electrical Systems, 2018, 29, 219-229.	2.0	5
44	Trends and Constraints on Brazilian Photovoltaic Industry: Energy Policies, Interconnection Codes, and Equipment Certification. IEEE Transactions on Industry Applications, 2018, 54, 4017-4027.	4.9	16
45	Distributed Generation Systems: An Approach in Instrumentation and Monitoring. Electric Power Components and Systems, 2018, 46, 2189-2202.	1.8	1
46	Coordinated control of three- and single-phase inverters coexisting in low-voltage microgrids. Applied Energy, 2018, 228, 2050-2060.	10.1	23
47	A new multifunctional converter based on a series compensator applied to AC microgrids. International Journal of Electrical Power and Energy Systems, 2018, 102, 160-170.	5 . 5	12
48	EXPERIMENTAL VALIDATION OF A FULLY-DISPATCHABLE MICROGRID WITH CENTRAL CONTROLLER. Eletrônica De Potência, 2018, 23, 1-11.	0.1	2
49	Centralized Control of Distributed Single-Phase Inverters Arbitrarily Connected to Three-Phase Four-Wire Microgrids. IEEE Transactions on Smart Grid, 2017, 8, 437-446.	9.0	80
50	Fully-dispatchable microgrid: Architecture, implementation and experimental validation., 2017,,.		4
51	Assessment of energy storage viability for a PV power plant injecting during peak load time. , 2017, , .		4
52	Analysis of a grid-forming converter based on repetitive control in centralized AC microgrid., 2017,,.		5
53	Fault-tolerant Utility Interface power converter for low-voltage microgrids. , 2017, , .		3
54	PV Microgeneration Perspective in Brazil: Approaching Interconnection Procedures and Equipment Certification., 2017,,.		1

#	Article	IF	CITATIONS
55	Analysis of 12-pulse diode rectifier operating in aircraft systems with constant frequency. , 2017, , .		7
56	Reactive power injection strategies for three-phase four-wire inverters under symmetrical voltage sags. , $2017, , .$		3
57	Multiobjective approach for power flow and unbalance control in low-voltage networks considering distributed energy resources., 2017,,.		2
58	A guideline for employing PSIM on power converter applications: Prototyping and educational tool. , $2017, , .$		1
59	Control of a PMSG based wind power system using abc-frame under distorted and asymmetrical voltage conditions. , 2017, , .		1
60	Analysis of 12-pulse diode rectifier operating in aircraft systems with variable frequency. , 2017, , .		4
61	Coordinated control of distributed generators in meshed low-voltage microgrids: Power flow control and voltage regulation. , 2016, , .		5
62	Single-phase synchronverter for residential PV power systems. , 2016, , .		11
63	Optimized Compensation of Unwanted Current Terms by AC Power Converters Under Generic Voltage Conditions. IEEE Transactions on Industrial Electronics, 2016, 63, 7743-7753.	7.9	16
64	Flexible active compensation based on load conformity factors applied to nonâ€sinusoidal and asymmetrical voltage conditions. IET Power Electronics, 2016, 9, 356-364.	2.1	20
65	Multiâ€ŧask control strategy for gridâ€ŧied inverters based on conservative power theory. IET Renewable Power Generation, 2015, 9, 154-165.	3.1	48
66	Oversampled dead-beat current controller for voltage source converters., 2015,,.		7
67	Cooperative compensation of unwanted current terms in low-voltage microgrids by distributed power-based control., 2015,,.		1
68	Dead-Beat Current Controller for Voltage Source Converters with Improved Large Signal Response. IEEE Transactions on Industry Applications, 2015, , 1-1.	4.9	24
69	Optimized compensation based on linear programming applied to distributed electronic power processors. , 2015, , .		4
70	Experimental verification of an active microgrid with distributed power-based control., 2015,,.		0
71	Bidirectional floating interleaved buck-boost DC-DC converter applied to residential PV power systems. , 2015, , .		14
72	Power-Based Control of Low-Voltage Microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3, 1056-1066.	5.4	60

#	Article	IF	CITATIONS
73	A dynamic overvoltage limiting technique for low-voltage microgrids. , 2015, , .		1
74	Comparison of oversampled current controllers for microgrid utility interface converters. , 2015, , .		3
75	Power-based control of low-voltage microgrids. , 2014, , .		2
76	Development of a four phase floating interleaved boost converter for photovoltaic systems. , 2014, , .		24
77	Experimental evaluation of an interleaved boost topology optimized for peak power tracking control. , 2014, , .		4
78	Decoupled Reference Generator for Shunt Active Filters Using the Conservative Power Theory. Journal of Control, Automation and Electrical Systems, 2013, 24, 522-534.	2.0	21
79	Inverter control strategy for DG systems based on the Conservative power theory. , 2013, , .		15
80	Considerations on the modeling and control scheme of grid connected inverter with voltage support capability. , 2013, , .		3
81	Power Electronics for Smart Distribution Grids. Green Energy and Technology, 2013, , 493-523.	0.6	O
82	Automatic Management Methodology For Photovoltaic Distributed Generation Systems. Eletrônica De Potência, 2013, 18, 1257-1265.	0.1	0
83	Shunt active compensation based on the Conservative Power Theory current's decomposition. , $2011, \ldots$		8
84	Smart Grid Initiative. IEEE Industry Applications Magazine, 2011, 17, 27-35.	0.4	40
85	Possible shunt compensation strategies based on Conservative Power Theory. , 2010, , .		1
86	Conservative power theory discussion and evaluation by means of virtual instrumentation., 2009,,.		5
87	Modeling and Validation of Passive Rectifier for Airplanes with Variable Frequency and Bipolar DC Buses. Journal of Aerospace Technology and Management, $0,13,.$	0.3	2
88	Electronic Instrumentation for Distributed Generation and Power Processes. , 0, , .		2