Riccardo Baroncelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5209164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role and genetic basis of specialised secondary metabolites in Trichoderma ecophysiology. Fungal Biology Reviews, 2022, 39, 83-99.	1.9	18
2	Management of Post-Harvest Anthracnose: Current Approaches and Future Perspectives. Plants, 2022, 11, 1856.	1.6	15
3	Straw Competition and Wheat Root Endophytism of <i>Trichoderma gamsii</i> T6085 as Useful Traits in the Biological Control of Fusarium Head Blight. Phytopathology, 2021, 111, 1129-1136.	1.1	20
4	Genome Sequence of the Biocontrol Agent <i>Coniothyrium minitans</i> Conio (IMI 134523). Molecular Plant-Microbe Interactions, 2021, 34, 222-225.	1.4	2
5	Fungal Planet description sheets: 1182–1283. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2021, , .	1.6	40
6	Soybean anthracnose caused by <i>Colletotrichum</i> species: Current status and future prospects. Molecular Plant Pathology, 2021, 22, 393-409.	2.0	47
7	Stagonosporopsis rhizophilae sp. nov. (Didymellaceae, Pleosporales), a new rhizospheric soil fungus associated with Populus deltoides Marsh . Phytotaxa, 2021, 491, 23-34.	0.1	2
8	Fungal cross-talk: an integrated approach to study distance communication. Fungal Genetics and Biology, 2021, 148, 103518.	0.9	20
9	A Major Effect Gene Controlling Development and Pathogenicity in Botrytis cinerea Identified Through Genetic Analysis of Natural Mycelial Non-pathogenic Isolates. Frontiers in Plant Science, 2021, 12, 663870.	1.7	3
10	Complete Genome Sequence of the plant pathogenic fungus Colletotrichum lupini Molecular Plant-Microbe Interactions, 2021, , MPMI07210173A.	1.4	9
11	Colletotrichum species and complexes: geographic distribution, host range and conservation status. Fungal Diversity, 2021, 110, 109-198.	4.7	79
12	Genomic sequences for fungi , 2021, , 231-254.		0
13	Identification and Comparison of Colletotrichum Secreted Effector Candidates Reveal Two Independent Lineages Pathogenic to Soybean. Pathogens, 2021, 10, 1520.	1.2	7
14	Phylogenetic Diversity and Effect of Temperature on Pathogenicity of Colletotrichum lupini. Plant Disease, 2020, 104, 938-950.	0.7	18
15	Combined Comparative Genomics and Gene Expression Analyses Provide Insights into the Terpene Synthases Inventory in Trichoderma. Microorganisms, 2020, 8, 1603.	1.6	25
16	Deciphering the Infectious Process of Colletotrichum lupini in Lupin through Transcriptomic and Proteomic Analysis. Microorganisms, 2020, 8, 1621.	1.6	18
17	Genome Sequence Resources of <i>Colletotrichum truncatum</i> , <i>C. plurivorum</i> , <i>C. musicola</i> , and <i>C. sojae</i> : Four Species Pathogenic to Soybean (<i>Glycine max</i>). Phytopathology, 2020, 110, 1497-1499.	1.1	12
18	Genome Sequence Data of the Soybean Pathogen Stagonosporopsis vannaccii: A Resource for Studies on Didymellaceae Evolution, Molecular Plant-Microbe Interactions, 2020, 33, 1022-1024.	1.4	1

RICCARDO BARONCELLI

#	Article	IF	CITATIONS
19	Colletotrichum gloeosporioides sensu stricto as causal agent of anthracnose on pomegranate fruit in Albania. Crop Protection, 2020, 137, 105291.	1.0	1
20	Genome Resources for the Endophytic Fungus <i>Paraphaeosphaeria sporulosa</i> . Molecular Plant-Microbe Interactions, 2020, 33, 1098-1099.	1.4	7
21	First Report of <i>Colletotrichum musicola</i> Causing Soybean Anthracnose in Brazil. Plant Disease, 2020, 104, 1858.	0.7	17
22	Nutritional factors modulating plant and fruit susceptibility to pathogens: BARD workshop, Haifa, Israel, February 25–26, 2018. Phytoparasitica, 2020, 48, 317-333.	0.6	0
23	Secondary metabolites produced by <i>Colletotrichum lupini</i> , the causal agent of anthachnose of lupin (<i>Lupinus</i> spp.). Mycologia, 2020, 112, 533-542.	0.8	11
24	<i>Impatiens glandulifera</i> (Himalayan balsam) chloroplast genome sequence as a promising target for populations studies. PeerJ, 2020, 8, e8739.	0.9	9
25	Molecular Detection of the Seed-Borne Pathogen Colletotrichum lupini Targeting the Hyper-Variable IGS Region of the Ribosomal Cluster. Plants, 2019, 8, 222.	1.6	18
26	Angioinvasive, cutaneous infection due toColletotrichum siamensein a stem cell transplant recipient: Report and review of prior cases. Transplant Infectious Disease, 2019, 21, e13153.	0.7	5
27	First Report of <i>Colletotrichum graminicola</i> Causing Maize Anthracnose in Bosnia and Herzegovina. Plant Disease, 2019, 103, 3281.	0.7	9
28	A novel metabarcoding approach to investigate Fusarium species composition in soil and plant samples. FEMS Microbiology Ecology, 2019, 95, .	1.3	25
29	Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics, 2019, 20, 485.	1.2	181
30	CRISPR-Cas for Fungal Genome Editing: A New Tool for the Management of Plant Diseases. Frontiers in Plant Science, 2019, 10, 135.	1.7	54
31	Combined Metabarcoding and Co-occurrence Network Analysis to Profile the Bacterial, Fungal and Fusarium Communities and Their Interactions in Maize Stalks. Frontiers in Microbiology, 2019, 10, 261.	1.5	51
32	Is Exploitation Competition Involved in a Multitrophic Strategy for the Biocontrol of Fusarium Head Blight?. Phytopathology, 2019, 109, 560-570.	1.1	25
33	First Report of <i>Colletotrichum fructicola</i> Causing Apple Bitter Rot in Europe. Plant Disease, 2019, 103, 1767.	0.7	13
34	Fungal Planet description sheets: 951–1041. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2019, 43, 223-425.	1.6	126
35	Whole-Genome Sequence of the Orchid Anthracnose Pathogen <i>Colletotrichum orchidophilum</i> . Molecular Plant-Microbe Interactions, 2018, 31, 979-981.	1.4	21
36	Genome Sequence of the Mycotoxigenic Crop Pathogen Fusarium proliferatum Strain ITEM 2341 from Date Palm. Microbiology Resource Announcements, 2018, 7, .	0.3	6

#	Article	IF	CITATIONS
37	Combined Metabarcoding and Multi-locus approach for Genetic characterization of Colletotrichum species associated with common walnut (Juglans regia) anthracnose in France. Scientific Reports, 2018, 8, 10765.	1.6	29
38	Polyketide synthases of Diaporthe helianthi and involvement of DhPKS1 in virulence on sunflower. BMC Genomics, 2018, 19, 27.	1.2	15
39	The Constitutive Endopolygalacturonase TvPG2 Regulates the Induction of Plant Systemic Resistance by <i>Trichoderma virens</i> . Phytopathology, 2017, 107, 537-544.	1.1	37
40	Colletochlorins E and F, New Phytotoxic Tetrasubstituted Pyran-2-one and Dihydrobenzofuran, Isolated from <i>Colletotrichum higginsianum</i> with Potential Herbicidal Activity. Journal of Agricultural and Food Chemistry, 2017, 65, 1124-1130.	2.4	39
41	First Report of <i>Colletotrichum godetiae</i> Causing Grape (<i>Vitis vinifera</i>) Berry Rot in Italy. Plant Disease, 2017, 101, 1051.	0.7	16
42	First Report of Pear Bitter Rot Caused by <i>Colletotrichum fioriniae</i> in France. Plant Disease, 2017, 101, 1319-1319.	0.7	7
43	Diversity of spoilage fungi associated with various French dairy products. International Journal of Food Microbiology, 2017, 241, 191-197.	2.1	98
44	Genome Sequence of Fusarium graminearum ITEM 124 (ATCC 56091), a Mycotoxigenic Plant Pathogen. Genome Announcements, 2017, 5, .	0.8	10
45	The Colletotrichum acutatum Species Complex as a Model System to Study Evolution and Host Specialization in Plant Pathogens. Frontiers in Microbiology, 2017, 8, 2001.	1.5	61
46	Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum. BMC Genomics, 2016, 17, 555.	1.2	151
47	Draft Whole-Genome Sequence of <i>Trichoderma gamsii</i> T6085, a Promising Biocontrol Agent of <i>Fusarium</i> Head Blight on Wheat. Genome Announcements, 2016, 4, .	0.8	34
48	Draft whole-genome sequence of the Diaporthe helianthi 7/96 strain, causal agent of sunflower stem canker. Genomics Data, 2016, 10, 151-152.	1.3	16
49	Two Endopolygalacturonase Genes in <i>Trichoderma virens</i> : <i> In Silico</i> Characterization and Expression during Interaction with Plants. Journal of Phytopathology, 2016, 164, 18-28.	0.5	6
50	Species of the Colletotrichum acutatum complex associated with anthracnose diseases of fruit in Brazil. Fungal Biology, 2016, 120, 547-561.	1.1	71
51	Higginsianins A and B, Two Diterpenoid α-Pyrones Produced by <i>Colletotrichum higginsianum</i> , with <i>in Vitro</i> Cytostatic Activity. Journal of Natural Products, 2016, 79, 116-125.	1.5	38
52	First Report of Apple Bitter Rot Caused by <i>Colletotrichum fioriniae</i> in Brittany, France. Plant Disease, 2016, 100, 1497-1497.	0.7	11
53	Draft Whole-Genome Sequence of the Biocontrol Agent <i>Trichoderma harzianum</i> T6776. Genome Announcements, 2015, 3, .	0.8	47
54	Molecular Diversity of Anthracnose Pathogen Populations Associated with UK Strawberry Production Suggests Multiple Introductions of Three Different Colletotrichum Species. PLoS ONE, 2015, 10, e0129140.	1.1	81

#	Article	IF	CITATIONS
55	A polyphasic contribution to the knowledge of Auxarthron (Onygenaceae). Mycological Progress, 2015, 14, 1.	0.5	16
56	Characterization and epidemiology of <i><scp>C</scp>olletotrichum acutatum sensu lato</i> (<i><scp>C</scp>.Âchrysanthemi</i>) causing <i><scp>C</scp>arthamus tinctorius</i> anthracnose. Plant Pathology, 2015, 64, 375-384.	1.2	25
57	Draft Genome Sequence of <i>Colletotrichum sublineola</i> , a Destructive Pathogen of Cultivated Sorghum. Genome Announcements, 2014, 2, .	0.8	45
58	Draft Genome Sequence of <i>Colletotrichum acutatum Sensu Lato</i> (<i>Colletotrichum) Tj ETQq0 0 0 rgBT /</i>	Overlock 1 0.8	0 Tf 50 622

59	First Report of Apple Bitter Rot Caused by <i>Colletotrichum godetiae</i> in the United Kingdom. Plant Disease, 2014, 98, 1000-1000.	0.7	25
60	First report of <i>Colletotrichum acutatum sensu lato</i> (<i>Colletotrichum godetiae</i>) causing anthracnose on grapevine (<i>Vitis vinifera</i>) in the United Kingdom. New Disease Reports, 2014, 29, 26-26.	0.4	17
61	Fusarium oxysporum degradation and detoxification of a new textile-glycoconjugate azo dye (GAD). Fungal Biology, 2011, 115, 30-37.	1.1	33
62	Colletotrichum: species, ecology and interactions. IMA Fungus, 2010, 1, 161-165.	1.7	53