Anil K Rustgi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5209016/publications.pdf

Version: 2024-02-01

150	12,551	50	107
papers	citations	h-index	g-index
155	155	155	23201 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Pan-ERBB kinase inhibition augments CDK4/6 inhibitor efficacy in oesophageal squamous cell carcinoma. Gut, 2022, 71, 665-675.	6.1	15
2	Presentation of the Julius M. Friedenwald Medal to Timothy C. Wang, MD, AGAF. Gastroenterology, 2022, , .	0.6	0
3	Rapidly adapting the clinical research environment at an NCI-designated comprehensive cancer center to the COVID-19 pandemic Journal of Clinical Oncology, 2022, 40, e13534-e13534.	0.8	O
4	The Balance of Stromal BMP Signaling Mediated by GREM1 and ISLR Drives Colorectal Carcinogenesis. Gastroenterology, 2021, 160, 1224-1239.e30.	0.6	76
5	Mesenchymal Plasticity Regulated by Prrx1 Drives Aggressive Pancreatic Cancer Biology. Gastroenterology, 2021, 160, 346-361.e24.	0.6	48
6	Rab11â€FIP1 mediates epithelialâ€mesenchymal transition and invasion in esophageal cancer. EMBO Reports, 2021, 22, e48351.	2.0	16
7	A clinical prediction model to assess risk for pancreatic cancer among patients with prediabetes. European Journal of Gastroenterology and Hepatology, 2021, Publish Ahead of Print, 33-38.	0.8	16
8	PTHrP Drives Pancreatic Cancer Growth and Metastasis and Reveals a New Therapeutic Vulnerability. Cancer Discovery, 2021, 11, 1774-1791.	7.7	25
9	Artificial Intelligence and Early Detection of Pancreatic Cancer. Pancreas, 2021, 50, 251-279.	0.5	71
10	LIN28B induces a differentiation program through CDX2 in colon cancer. JCI Insight, 2021, 6, .	2.3	7
11	Multigene Panel Testing in Individuals With Hepatocellular Carcinoma Identifies Pathogenic Germline Variants. JCO Precision Oncology, 2021, 5, 988-1000.	1.5	10
12	Reprogramming of the esophageal squamous carcinoma epigenome by SOX2 promotes ADAR1 dependence. Nature Genetics, 2021, 53, 881-894.	9.4	44
13	Emerging technologies provide insights on cancer extracellular matrix biology and therapeutics. IScience, 2021, 24, 102475.	1.9	9
14	Pancreatic plasticity: Unlocking exocrine lineage specification. Cell Stem Cell, 2021, 28, 987-988.	5.2	2
15	Calcium signaling induces a partial EMT. EMBO Reports, 2021, 22, e51872.	2.0	33
16	Single-cell analysis of ductal differentiation. Nature Biomedical Engineering, 2021, 5, 785-786.	11.6	1
17	Diversity in Leadership at Academic Medical Centers. JAMA - Journal of the American Medical Association, 2021, 326, 605.	3.8	16
18	Stem cells and origins of cancer in the upper gastrointestinal tract. Cell Stem Cell, 2021, 28, 1343-1361.	5.2	42

#	Article	lF	Citations
19	Extracellular ATP and Adenosine in Cancer Pathogenesis and Treatment. Trends in Cancer, 2021, 7, 731-750.	3.8	29
20	Gene-Specific Variation in Colorectal Cancer Surveillance Strategies for Lynch Syndrome. Gastroenterology, 2021, 161, 453-462.e15.	0.6	17
21	COVID-19 related pancreatic cancer surveillance disruptions amongst high-risk individuals. Pancreatology, 2021, 21, 1048-1051.	0.5	8
22	Screening for Pancreatic Ductal Adenocarcinoma: Are We Asking the Impossible?â€"Letter. Cancer Prevention Research, 2021, 14, 973-974.	0.7	3
23	Patient-derived organoids as a platform for modeling a patient's response to chemoradiotherapy in esophageal cancer. Scientific Reports, 2021, 11, 21304.	1.6	20
24	Abstract PR-001: Ex vivo co-culture system with patient-derived organoids to assess CXCR4 inhibitor as an immune modulating agent for human pancreas adenocarcinoma., 2021,,.		0
25	Endoscopic Ultrasound Has Limited Utility in Diagnosis of Gastric Cancer in Carriers of CDH1 Mutations. Clinical Gastroenterology and Hepatology, 2020, 18, 505-508.e1.	2.4	16
26	Growth of pancreatic cancers with hemizygous chromosomal 17p loss of <i>MYBBP1A</i> can be preferentially targeted by PARP inhibitors. Science Advances, 2020, 6, .	4.7	3
27	EMT, MET, Plasticity, and Tumor Metastasis. Trends in Cell Biology, 2020, 30, 764-776.	3.6	499
28	2020 American Pancreatic Association Presidential Address. Pancreas, 2020, 49, 1263-1263.	0.5	0
29	Familial Barrett's Esophagus and Esophageal Adenocarcinoma. Current Treatment Options in Gastroenterology, 2020, 18, 616-622.	0.3	1
30	Identifying predictors of <scp>HPV</scp> â€related head and neck squamous cell carcinoma progression and survival through patientâ€derived models. International Journal of Cancer, 2020, 147, 3236-3249.	2.3	40
31	Associations of sociodemographic and clinical factors with gastrointestinal cancer risk assessment appointment completion. Journal of Genetic Counseling, 2020, 29, 616-624.	0.9	3
32	Loss-of-function variants in CTNNA1 detected on multigene panel testing in individuals with gastric or breast cancer. Genetics in Medicine, 2020, 22, 840-846.	1.1	30
33	Outcomes of patients with submucosal (T1b) esophageal adenocarcinoma: a multicenter cohort study. Gastrointestinal Endoscopy, 2020, 92, 31-39.e1.	0.5	33
34	Notch Signaling Mediates Differentiation in Barrett's Esophagus and Promotes Progression to Adenocarcinoma. Gastroenterology, 2020, 159, 575-590.	0.6	49
35	Generation and Characterization of Patientâ€Derived Head and Neck, Oral, and Esophageal Cancer Organoids. Current Protocols in Stem Cell Biology, 2020, 53, e109.	3.0	45
36	Phase Ib study of gemcitabine, nab-paclitaxel, and ficlatuzumab in patients with advanced pancreatic cancer Journal of Clinical Oncology, 2020, 38, 693-693.	0.8	4

#	Article	IF	CITATIONS
37	Identification of a novel GREM1 duplication in a patient with multiple colon polyps. Familial Cancer, 2019, 18, 63-66.	0.9	16
38	A region-based gene association study combined with a leave-one-out sensitivity analysis identifies SMG1 as a pancreatic cancer susceptibility gene. PLoS Genetics, 2019, 15, e1008344.	1.5	13
39	PRRX1 isoforms cooperate with FOXM1 to regulate the DNA damage response in pancreatic cancer cells. Oncogene, 2019, 38, 4325-4339.	2.6	24
40	Targeting glutamine-addiction and overcoming CDK4/6 inhibitor resistance in human esophageal squamous cell carcinoma. Nature Communications, 2019, 10, 1296.	5.8	73
41	Use of hPSC-derived 3D organoids and mouse genetics to define the roles of YAP in the development of the esophagus. Development (Cambridge), 2019, 146, .	1.2	19
42	IMP1 3′ UTR shortening enhances metastatic burden in colorectal cancer. Carcinogenesis, 2019, 40, 569-579.	1.3	16
43	Earlier Colorectal Cancer Screening May Be Necessary In Patients With Li-Fraumeni Syndrome. Gastroenterology, 2019, 156, 273-274.	0.6	19
44	Three-Dimensional Organoids Reveal Therapy Resistance of Esophageal and Oropharyngeal Squamous Cell Carcinoma Cells. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 73-91.	2.3	102
45	Mechanisms Underlying Metastatic Pancreatic Cancer. Advances in Experimental Medicine and Biology, 2019, 1164, 3-10.	0.8	7
46	Flow based single cell analysis of the immune landscape distinguishes Barrett's esophagus from adjacent normal tissue. Oncotarget, 2019, 10, 3592-3604.	0.8	7
47	The Molecular Basis of Metastatic Colorectal Cancer. Current Colorectal Cancer Reports, 2018, 14, 69-79.	1.0	7
48	Mutations in the pancreatic secretory enzymes <i>CPA1</i> and <i>CPB1</i> are associated with pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4767-4772.	3.3	65
49	Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. Cell Reports, 2018, 23, 194-212.e6.	2.9	245
50	RNA Binding Proteins in Intestinal Epithelial Biology and Colorectal Cancer. Trends in Molecular Medicine, 2018, 24, 490-506.	3.5	124
51	ETV5 regulates ductal morphogenesis with Sox9 and is critical for regeneration from pancreatitis. Developmental Dynamics, 2018, 247, 854-866.	0.8	6
52	Differential Regulation of <i>LET-7</i> by LIN28B Isoformâ€"Specific Functions. Molecular Cancer Research, 2018, 16, 403-416.	1.5	13
53	The Esophageal Organoid System Reveals Functional Interplay Between Notch and Cytokines in Reactive EpithelialAChanges. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 333-352.	2.3	72
54	Pancreas 3D Organoids: Current and Future Aspects as a Research Platform for Personalized Medicine in Pancreatic Cancer. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 289-298.	2.3	86

#	Article	IF	CITATIONS
55	Dose-response Effects of Aerobic Exercise Among Colon Cancer Survivors: A Randomized Phase II Trial. Clinical Colorectal Cancer, 2018, 17, 32-40.	1.0	32
56	Targeting JARID1B's demethylase activity blocks a subset of its functions in oral cancer. Oncotarget, 2018, 9, 8985-8998.	0.8	6
57	3D Human Esophageal Epithelium Steps Out from hPSCs. Cell Stem Cell, 2018, 23, 460-462.	5.2	2
58	Cigarette Smoke Toxins-Induced Mitochondrial Dysfunction and Pancreatitis Involves Aryl Hydrocarbon Receptor Mediated Cyp1 Gene Expression: Protective Effects of Resveratrol. Toxicological Sciences, 2018, 166, 428-440.	1.4	12
59	Mouse Intestinal Krt15+ Crypt Cells Are Radio-Resistant and Tumor Initiating. Stem Cell Reports, 2018, 10, 1947-1958.	2.3	35
60	Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nature Medicine, 2018, 24, 968-977.	15.2	196
61	IL-6 Mediates Cross-Talk between Tumor Cells and Activated Fibroblasts in the Tumor Microenvironment. Cancer Research, 2018, 78, 4957-4970.	0.4	203
62	The LIN28B–IMP1 post-transcriptional regulon has opposing effects on oncogenic signaling in the intestine. Genes and Development, 2018, 32, 1020-1034.	2.7	20
63	BET Bromodomain Inhibition Cooperates with PD-1 Blockade to Facilitate Antitumor Response in <i>Kras</i> -Mutant Non–Small Cell Lung Cancer. Cancer Immunology Research, 2018, 6, 1234-1245.	1.6	80
64	The Lung and Esophagus: Developmental and Regenerative Overlap. Trends in Cell Biology, 2018, 28, 738-748.	3.6	27
65	A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors. Nature Genetics, 2018, 50, 979-989.	9.4	168
66	Regulation of Epithelial Plasticity Determines Metastatic Organotropism in Pancreatic Cancer. Developmental Cell, 2018, 45, 696-711.e8.	3.1	96
67	Disruption of stromal hedgehog signaling initiates RNF5-mediated proteasomal degradation of PTEN and accelerates pancreatic tumor growth. Life Science Alliance, 2018, 1, e201800190.	1.3	33
68	Gastric Cancer Genomics: Advances and FutureÂDirections. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 211-217.	2.3	60
69	Inactivation of Interferon Receptor Promotes the Establishment of Immune Privileged Tumor Microenvironment. Cancer Cell, 2017, 31, 194-207.	7.7	179
70	Modeling Esophagitis Using Human Three-Dimensional Organotypic Culture System. American Journal of Pathology, 2017, 187, 1787-1799.	1.9	7
71	Barriers to generating PDX models of HPVâ€related head and neck cancer. Laryngoscope, 2017, 127, 2777-2783.	1.1	33
72	Lkb1 inactivation drives lung cancer lineage switching governed by Polycomb Repressive Complex 2. Nature Communications, 2017, 8, 14922.	5 . 8	80

#	Article	IF	Citations
73	Mutual reinforcement between telomere capping and canonical Wnt signalling in the intestinal stem cell niche. Nature Communications, 2017, 8, 14766.	5.8	28
74	A Clinical Prediction Model to Assess Risk for Pancreatic Cancer Among Patients With New-Onset Diabetes. Gastroenterology, 2017, 152, 840-850.e3.	0.6	133
75	A Tissue Systems Pathology Test Detects Abnormalities Associated with Prevalent High-Grade Dysplasia and Esophageal Cancer in Barrett's Esophagus. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 240-248.	1.1	36
76	Metaplasia: tissue injury adaptation and a precursor to the dysplasia–cancer sequence. Nature Reviews Cancer, 2017, 17, 594-604.	12.8	225
77	Dose–response effects of aerobic exercise on body composition among colon cancer survivors: a randomised controlled trial. British Journal of Cancer, 2017, 117, 1614-1620.	2.9	35
78	Interplay between Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell carcinoma. Nature Communications, 2017, 8, 1758.	5.8	155
79	The TALE homeodomain transcription factor MEIS1 activates the proâ€metastatic melanoma cell adhesion molecule <i>Mcam</i> to promote migration of pancreatic cancer cells. Molecular Carcinogenesis, 2017, 56, 936-944.	1.3	11
80	Comparative transcriptomes of adenocarcinomas and squamous cell carcinomas reveal molecular similarities that span classical anatomic boundaries. PLoS Genetics, 2017, 13, e1006938.	1.5	46
81	Gastrin stimulates a cholecystokinin-2-receptor-expressing cardia progenitor cell and promotes progression of Barrett's-like esophagus. Oncotarget, 2017, 8, 203-214.	0.8	53
82	Autophagy levels are elevated in barrett's esophagus and promote cell survival from acid and oxidative stress. Molecular Carcinogenesis, 2016, 55, 1526-1541.	1.3	20
83	A Tissue Systems Pathology Assay for High-Risk Barrett's Esophagus. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 958-968.	1.1	45
84	ETS-Transcription Factor ETV1 Regulates Stromal Expansion andÂMetastasis in Pancreatic Cancer. Gastroenterology, 2016, 151, 540-553.e14.	0.6	44
85	Our New President—Timothy C. Wang, MD. Gastroenterology, 2016, 150, 1231-1236.	0.6	0
86	Dclk1 Defines Quiescent Pancreatic Progenitors that Promote Injury-Induced Regeneration and Tumorigenesis. Cell Stem Cell, 2016, 18, 441-455.	5.2	196
87	Squamous Cell Cancers: A Unified Perspective on Biology and Genetics. Cancer Cell, 2016, 29, 622-637.	7.7	237
88	Pancreatic fibroblasts smoothen their activities via AKT–GLI2–TGFα. Genes and Development, 2016, 30, 1911-1912.	2.7	1
89	JARID1B Enables Transit between Distinct States of the Stem-like Cell Population in Oral Cancers. Cancer Research, 2016, 76, 5538-5549.	0.4	46
90	Prrx1 isoform switching regulates pancreatic cancer invasion and metastatic colonization. Genes and Development, 2016, 30, 233-247.	2.7	97

#	Article	IF	Citations
91	Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discovery, 2016, 6, 166-175.	7.7	282
92	Impact of Metformin on Advanced Pancreatic Cancer Survival: Too Little, Too Late?. Clinical Cancer Research, 2016, 22, 1031-1033.	3.2	8
93	Multiparametric profiling of non–small-cell lung cancers reveals distinct immunophenotypes. JCI Insight, 2016, 1, e89014.	2.3	110
94	Let-7 Represses Carcinogenesis and a Stem Cell Phenotype in the Intestine via Regulation of Hmga2. PLoS Genetics, 2015, 11, e1005408.	1.5	68
95	Assessing Computational Steps for CLIP-Seq Data Analysis. BioMed Research International, 2015, 2015, 1-10.	0.9	9
96	Krt19+/Lgr5â^' Cells Are Radioresistant Cancer-Initiating Stem Cells in the Colon and Intestine. Cell Stem Cell, 2015, 16, 627-638.	5.2	161
97	Culturing Primary Mouse Pancreatic Ductal Cells. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot078279.	0.2	12
98	SOX15 Governs Transcription in Human Stratified Epithelia and a Subset of Esophageal Adenocarcinomas. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 598-609.e6.	2.3	14
99	PRMT5 Is Required for Lymphomagenesis Triggered by Multiple Oncogenic Drivers. Cancer Discovery, 2015, 5, 288-303.	7.7	127
100	Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential. Cell, 2015, 160, 269-284.	13.5	535
101	Detection of Tumor Suppressor Genes in Cancer Development by a Novel shRNA-Based Method. Molecular Cancer Research, 2015, 13, 863-869.	1.5	6
102	Imaging of Secreted Extracellular Periostin, an Important Marker of Invasion in the Tumor Microenvironment in Esophageal Cancer. Journal of Nuclear Medicine, 2015, 56, 1246-1251.	2.8	17
103	Spontaneous Pancreatitis Caused by Tissue-Specific Gene Ablation of Hhex in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 550-569.	2.3	11
104	Three-Dimensional Organotypic Culture of Stratified Epithelia. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot078311.	0.2	3
105	WNT10A promotes an invasive and self-renewing phenotype in esophageal squamous cell carcinoma. Carcinogenesis, 2015, 36, 598-606.	1.3	59
106	A LIN28B-RAN-AURKA Signaling Network Promotes Neuroblastoma Tumorigenesis. Cancer Cell, 2015, 28, 599-609.	7.7	99
107	Culturing Mouse Tumor Cells. Cold Spring Harbor Protocols, 2015, 2015, pdb.top069989.	0.2	1
108	Racial Disparities in Colorectal Cancer Survival: Is Elimination of Variation in Care the Cure?. Journal of the National Cancer Institute, 2015, 107, djv229.	3.0	12

#	Article	IF	Citations
109	CD38-Expressing Myeloid-Derived Suppressor Cells Promote Tumor Growth in a Murine Model of Esophageal Cancer. Cancer Research, 2015, 75, 4074-4085.	0.4	122
110	Multiple Gastrointestinal Polyps in Patients Treated with BRAF Inhibitors. Clinical Cancer Research, 2015, 21, 5215-5221.	3.2	17
111	Loss of Stromal IMP1 Promotes a Tumorigenic Microenvironment in the Colon. Molecular Cancer Research, 2015, 13, 1478-1486.	1.5	34
112	Radiofrequency Ablation Is Associated With Decreased Neoplastic Progression in Patients With Barrett's Esophagus and Confirmed Low-Grade Dysplasia. Gastroenterology, 2015, 149, 567-576.e3.	0.6	77
113	Immature myeloid progenitors promote disease progression in a mouse model of Barrett's-like metaplasia. Oncotarget, 2015, 6, 32980-33005.	0.8	10
114	mRNAâ€binding protein IMP1 is a novel regulator of autophagy following intestinal irradiation injury. FASEB Journal, 2015, 29, 148.7.	0.2	0
115	Fluorescent Nanoparticle Imaging Allows Noninvasive Evaluation of Immune Cell Modulation in Esophageal Dysplasia. Molecular Imaging, 2014, 13, 7290.2014.00003.	0.7	12
116	Mark Warren Babyatsky, MD (June 29, 1959–August 25, 2014). Gastroenterology, 2014, 147, 1189-1190.	0.6	2
117	Esophageal Carcinoma. New England Journal of Medicine, 2014, 371, 2499-2509.	13.9	1,051
118	The Efficacy of Screening Colonoscopy. JAMA Internal Medicine, 2014, 174, 483.	2.6	1
119	Familial pancreatic cancer: genetic advances. Genes and Development, 2014, 28, 1-7.	2.7	85
120	O-GlcNAc Transferase Is Critical for Transducin-like Enhancer of Split (TLE)-mediated Repression of Canonical Wnt Signaling. Journal of Biological Chemistry, 2014, 289, 12168-12176.	1.6	9
121	Modeling human gastrointestinal inflammatory diseases using microphysiological culture systems. Experimental Biology and Medicine, 2014, 239, 1108-1123.	1.1	15
122	Barrett's Esophagus Translational Research Network (BETRNet): The Pivotal Role of Multi-institutional Collaboration in Esophageal Adenocarcinoma Research. Gastroenterology, 2014, 146, 1586-1590.	0.6	5
123	Loss of Lkb1 and Pten Leads to Lung Squamous Cell Carcinoma with Elevated PD-L1 Expression. Cancer Cell, 2014, 25, 590-604.	7.7	332
124	SOX2 and p63 colocalize at genetic loci in squamous cell carcinomas. Journal of Clinical Investigation, 2014, 124, 1636-1645.	3.9	151
125	IMP1 loss in intestinal epithelial cells promotes altered Paneth cell morphology and autophagy defects (899.2). FASEB Journal, 2014, 28, 899.2.	0.2	O

#	Article	IF	Citations
127	Recurrence of Esophageal Intestinal Metaplasia After Endoscopic Mucosal Resection and Radiofrequency Ablation of Barrett's Esophagus: Results From a US Multicenter Consortium. Gastroenterology, 2013, 145, 79-86.e1.	0.6	222
128	IMP1 promotes tumor growth, dissemination and a tumor-initiating cell phenotype in colorectal cancer cell xenografts. Carcinogenesis, 2013, 34, 2647-2654.	1.3	64
129	The Prrx1 homeodomain transcription factor plays a central role in pancreatic regeneration and carcinogenesis. Genes and Development, 2013, 27, 288-300.	2.7	101
130	G astroenterology 's Editors-in-Chief: Historical and Personal Perspectives of Their Editorships. Gastroenterology, 2013, 145, 16-31.	0.6	2
131	The House of Gastrointestinal Medicine: How Academic Medical Centers Can Build a Sustainable Economic Clinical Model. Clinical Gastroenterology and Hepatology, 2013, 11, 1370-1373.	2.4	6
132	Optical Imaging of Periostin Enables Early Endoscopic Detection and Characterization of Esophageal Cancer in Mice. Gastroenterology, 2013, 144, 294-297.	0.6	28
133	A Historical Perspective on Clinical Advances in Pancreatic Diseases. Gastroenterology, 2013, 144, 1249-1251.	0.6	10
134	Isolation, culture and genetic manipulation of mouse pancreatic ductal cells. Nature Protocols, 2013, 8, 1354-1365.	5.5	79
135	A common p53 mutation (R175H) activates c-Met receptor tyrosine kinase to enhance tumor cell invasion. Cancer Biology and Therapy, 2013, 14, 853-859.	1.5	33
136	EMT and Dissemination Precede Pancreatic Tumor Formation. Cell, 2012, 148, 349-361.	13.5	1,746
136	EMT and Dissemination Precede Pancreatic Tumor Formation. Cell, 2012, 148, 349-361. Constitutive Kâ€RasC12D Activation of ERK2 Specifically Regulates 3D Invasion of Human Pancreatic Cancer Cells via MMPâ€1. FASEB Journal, 2012, 26, 975.1.	0.2	1,746
	Constitutive Kâ€RasG12D Activation of ERK2 Specifically Regulates 3D Invasion of Human Pancreatic		
137	Constitutive Kâ€RasG12D Activation of ERK2 Specifically Regulates 3D Invasion of Human Pancreatic Cancer Cells via MMPâ€1. FASEB Journal, 2012, 26, 975.1.	0.2	0
137	Constitutive Kâ€RasG12D Activation of ERK2 Specifically Regulates 3D Invasion of Human Pancreatic Cancer Cells via MMPâ€1. FASEB Journal, 2012, 26, 975.1. Mentorship in Academic Medicine. Gastroenterology, 2011, 141, 789-792. Deletion of p120-Catenin Results in a Tumor Microenvironment with Inflammation and Cancer that	0.2	23
137 138 139	Constitutive Kâ€RasG12D Activation of ERK2 Specifically Regulates 3D Invasion of Human Pancreatic Cancer Cells via MMPâ€1. FASEB Journal, 2012, 26, 975.1. Mentorship in Academic Medicine. Gastroenterology, 2011, 141, 789-792. Deletion of p120-Catenin Results in a Tumor Microenvironment with Inflammation and Cancer that Establishes It as a Tumor Suppressor Gene. Cancer Cell, 2011, 19, 470-483. Pancreatic ductal cells in development, regeneration, and neoplasia. Journal of Clinical Investigation,	0.2	0 23 176
137 138 139	Constitutive Kâ€RasG12D Activation of ERK2 Specifically Regulates 3D Invasion of Human Pancreatic Cancer Cells via MMPâ€1. FASEB Journal, 2012, 26, 975.1. Mentorship in Academic Medicine. Gastroenterology, 2011, 141, 789-792. Deletion of p120-Catenin Results in a Tumor Microenvironment with Inflammation and Cancer that Establishes It as a Tumor Suppressor Gene. Cancer Cell, 2011, 19, 470-483. Pancreatic ductal cells in development, regeneration, and neoplasia. Journal of Clinical Investigation, 2011, 121, 4572-4578. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas.	0.2 0.6 7.7 3.9	0 23 176 202
137 138 139 140	Constitutive Kâ€RasC12D Activation of ERK2 Specifically Regulates 3D Invasion of Human Pancreatic Cancer Cells via MMPâ€1. FASEB Journal, 2012, 26, 975.1. Mentorship in Academic Medicine. Gastroenterology, 2011, 141, 789-792. Deletion of p120-Catenin Results in a Tumor Microenvironment with Inflammation and Cancer that Establishes It as a Tumor Suppressor Gene. Cancer Cell, 2011, 19, 470-483. Pancreatic ductal cells in development, regeneration, and neoplasia. Journal of Clinical Investigation, 2011, 121, 4572-4578. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nature Genetics, 2009, 41, 1238-1242.	0.2 0.6 7.7 3.9	0 23 176 202 862

ANIL K RUSTGI

#	Article	IF	Citations
145	Intestinal cell kinase (ICK) localizes to the crypt region and requires a dual phosphorylation site found in map kinases., 2000, 183, 129-139.		47
146	Dual function of the epithelial specific ets transcription factor, ELF3, in modulating differentiation. Oncogene, 2000, 19, 1941-1949.	2.6	57
147	The Krý ppel-like transcriptional factors Zf9 and GKLF coactivate the human keratin 4 promoter and physically interact. FEBS Letters, 2000, 473, 95-100.	1.3	64
148	Esophageal Neoplasms. , 0, , 849-870.		2
149	Esophageal Neoplasms. , 0, , 93-101.		0
150	Esophageal Neoplasms. , 0, , 196-204.		O