
Ansgar Gruber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5208355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial phosphoenolpyruvate carboxylase contributes to carbon fixation in the diatom <i>Phaeodactylum tricornutum</i> at low inorganic carbon concentrations. New Phytologist, 2022, 235, 1379-1393.	3.5	5
2	Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia. International Journal of Molecular Sciences, 2021, 22, 6495.	1.8	5
3	Fatty Acid Biosynthesis in Chromerids. Biomolecules, 2020, 10, 1102.	1.8	1
4	Characterization of Aminoacyl-tRNA Synthetases in Chromerids. Genes, 2019, 10, 582.	1.0	5
5	Morphology, Ultrastructure, and Mitochondrial Genome of the Marine Non-Photosynthetic Bicosoecid Cafileria marina Gen. et sp. nov Microorganisms, 2019, 7, 240.	1.6	5
6	Organelle Studies and Proteome Analyses of Mitochondria and Plastids Fractions from the Diatom <i>Thalassiosira pseudonana</i> . Plant and Cell Physiology, 2019, 60, 1811-1828.	1.5	39
7	What's in a name? How organelles of endosymbiotic origin can be distinguished from endosymbionts. Microbial Cell, 2019, 6, 123-133.	1.4	8
8	Nucleotide Transport and Metabolism in Diatoms. Biomolecules, 2019, 9, 761.	1.8	6
9	The intracellular distribution of inorganic carbon fixing enzymes does not support the presence of a C4 pathway in the diatom Phaeodactylum tricornutum. Photosynthesis Research, 2018, 137, 263-280.	1.6	39
10	Mitochondrial Glycolysis in a Major Lineage of Eukaryotes. Genome Biology and Evolution, 2018, 10, 2310-2325.	1.1	62
11	Blasticidin-S deaminase, a new selection marker for genetic transformation of the diatom <i>Phaeodactylum tricornutum</i> . PeerJ, 2018, 6, e5884.	0.9	36
12	Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature, 2017, 541, 536-540.	13.7	332
13	Intracellular metabolic pathway distribution in diatoms and tools for genome-enabled experimental diatom research. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160402.	1.8	38
14	Shuttling of (deoxyâ€) purine nucleotides between compartments of the diatom <i>Phaeodactylum tricornutum</i> . New Phytologist, 2017, 213, 193-205.	3.5	20
15	Rapid induction of GFP expression by the nitrate reductase promoter in the diatom <i>Phaeodactylum tricornutum</i> . PeerJ, 2016, 4, e2344.	0.9	32
16	Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant Journal, 2015, 81, 519-528.	2.8	174
17	Influence of bacteria on cell size development and morphology of cultivated diatoms. Phycological Research, 2014, 62, 269-281.	0.8	29
18	Deducing Intracellular Distributions of Metabolic Pathways from Genomic Data. Methods in Molecular Biology, 2014, 1083, 187-211.	0.4	12

ANSGAR GRUBER

#	Article	IF	CITATIONS
19	A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids. BMC Evolutionary Biology, 2013, 13, 159.	3.2	32
20	High Light Acclimation in the Secondary Plastids Containing Diatom <i>Phaeodactylum tricornutum</i> is Triggered by the Redox State of the Plastoquinone Pool Â. Plant Physiology, 2013, 161, 853-865.	2.3	119
21	The role of <scp>C</scp> ₄ metabolism in the marine diatom <i><scp>P</scp>haeodactylum tricornutum</i> . New Phytologist, 2013, 197, 177-185.	3.5	83
22	Analysing size variation during light-starvation response of nutritionally diverse chrysophytes with a Coulter counter. Algological Studies (Stuttgart, Germany: 2007), 2013, 141, 37-51.	0.4	4
23	Aureochrome 1a Is Involved in the Photoacclimation of the Diatom Phaeodactylum tricornutum. PLoS ONE, 2013, 8, e74451.	1.1	77
24	Influence of nutrients and light on autotrophic, mixotrophic and heterotrophic freshwater chrysophytes. Aquatic Microbial Ecology, 2013, 71, 179-191.	0.9	43
25	Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 2012, 492, 59-65.	13.7	377
26	SPOROGENESIS UNDER ULTRAVIOLET RADIATION IN LAMINARIA DIGITATA (PHAEOPHYCEAE) REVEALS PROTECTION OF PHOTOSENSITIVE MEIOSPORES WITHIN SORAL TISSUE: PHYSIOLOGICAL AND ANATOMICAL EVIDENCE1. Journal of Phycology, 2011, 47, 603-614.	1.0	16
27	Characterization of a trimeric light-harvesting complex in the diatom Phaeodactylum tricornutum built of FcpA and FcpE proteins. Journal of Experimental Botany, 2010, 61, 3079-3087.	2.4	44
28	The Presence and Localization of Thioredoxins in Diatoms, Unicellular Algae of Secondary Endosymbiotic Origin. Molecular Plant, 2009, 2, 468-477.	3.9	29
29	Diatom plastids depend on nucleotide import from the cytosol. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3621-3626.	3.3	80
30	Intracellular distribution of the reductive and oxidative pentose phosphate pathways in two diatoms. Journal of Basic Microbiology, 2009, 49, 58-72.	1.8	36
31	The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 2008, 456, 239-244.	13.7	1,458
32	A Model for Carbohydrate Metabolism in the Diatom Phaeodactylum tricornutum Deduced from Comparative Whole Genome Analysis. PLoS ONE, 2008, 3, e1426.	1.1	394
33	Der1-mediated Preprotein Import into the Periplastid Compartment of Chromalveolates?. Molecular Biology and Evolution, 2007, 24, 918-928.	3.5	142
34	Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Molecular Biology, 2007, 64, 519-530.	2.0	181
35	Susceptibility of zoospores to UV radiation determines upper depth distribution limit of Arctic kelps: evidence through field experiments. Journal of Ecology, 2006, 94, 455-463.	1.9	118
36	Sensitivity of Laminariales zoospores from Helgoland (North Sea) to ultraviolet and photosynthetically active radiation: implications for depth distribution and seasonal reproduction. Plant, Cell and Environment, 2005, 28, 466-479.	2.8	71