
Hui Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5208193/publications.pdf Version: 2024-02-01

Huiluo

#	Article	lF	CITATIONS
1	Progress and Perspectives in Photo―and Electrochemicalâ€Oxidation of Biomass for Sustainable Chemicals and Hydrogen Production. Advanced Energy Materials, 2021, 11, 2101180.	19.5	200
2	Recent advances in hydrothermal carbonisation: from tailored carbon materials and biochemicals to applications and bioenergy. Green Chemistry, 2020, 22, 4747-4800.	9.0	136
3	Nitrogen-Doped Carbon Dots/TiO ₂ Nanoparticle Composites for Photoelectrochemical Water Oxidation. ACS Applied Nano Materials, 2020, 3, 3371-3381.	5.0	71
4	Unveiling the role of hydrothermal carbon dots as anodes in sodium-ion batteries with ultrahigh initial coulombic efficiency. Journal of Materials Chemistry A, 2019, 7, 27567-27575.	10.3	69
5	Pt single-atoms supported on nitrogen-doped carbon dots for highly efficient photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2020, 8, 14690-14696.	10.3	62
6	Photoelectrochemical response of carbon dots (CDs) derived from chitosan and their use in electrochemical imaging. Materials Horizons, 2018, 5, 423-428.	12.2	55
7	Ammonia Gas Sensor Response of a Vertical Zinc Oxide Nanorod-Gold Junction Diode at Room Temperature. ACS Sensors, 2020, 5, 3568-3575.	7.8	47
8	Carbon Dots in Solar-to-Hydrogen Conversion. Trends in Chemistry, 2020, 2, 623-637.	8.5	47
9	Iron, Nitrogen Coâ€Đoped Carbon Spheres as Low Cost, Scalable Electrocatalysts for the Oxygen Reduction Reaction. Advanced Functional Materials, 2021, 31, 2102974.	14.9	35
10	Boosting the Oxygen Reduction Electrocatalytic Performance of Nonprecious Metal Nanocarbons via Triple Boundary Engineering Using Protic Ionic Liquids. ACS Applied Materials & Interfaces, 2019, 11, 11298-11305.	8.0	34
11	Manipulating the Optical Properties of Carbon Dots by Fineâ€Tuning their Structural Features. ChemSusChem, 2019, 12, 4432-4441.	6.8	33
12	Highly active platinum electrocatalyst towards oxygen reduction reaction in renewable energy generations of proton exchange membrane fuel cells. Applied Energy, 2016, 173, 59-66.	10.1	32
13	Designer uniform Li plating/stripping through lithium–cobalt alloying hierarchical scaffolds for scalable high-performance lithium-metal anodes. Journal of Energy Chemistry, 2021, 52, 385-392.	12.9	29
14	The impact of having an oxygen-rich microporous surface in carbon electrodes for high-power aqueous supercapacitors. Journal of Energy Chemistry, 2021, 53, 36-48.	12.9	24
15	Structural evolution of carbon dots during low temperature pyrolysis. Nanoscale, 2022, 14, 910-918.	5.6	21
16	Metal coordination in C ₂ N-like materials towards dual atom catalysts for oxygen reduction. Journal of Materials Chemistry A, 2022, 10, 6023-6030.	10.3	21
17	Hybrid Redox Flow Cells with Enhanced Electrochemical Performance via Binderless and Electrophoretically Deposited Nitrogen-Doped Graphene on Carbon Paper Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 53869-53878.	8.0	19
18	Charge/discharge and cycling performance of flexible carbon paper electrodes in a regenerative hydrogen/vanadium fuel cell. International Journal of Hydrogen Energy, 2019, 44, 30093-30107.	7.1	14

Hui Luo

#	Article	IF	CITATIONS
19	Achieving high initial Coulombic efficiency for competent Na storage by microstructure tailoring from chiral nematic nanocrystalline cellulose. , 2022, 4, 914-923.		13
20	The role of carbon dots – derived underlayer in hematite photoanodes. Nanoscale, 2020, 12, 20220-20229.	5.6	9
21	How to functionalise metal–organic frameworks to enable guest nanocluster embedment. Journal of Materials Chemistry A, 2020, 8, 4889-4897.	10.3	6
22	Plasma-Wind-Assisted In2S3 Preparation with an Amorphous Surface Structure for Enhanced Photocatalytic Hydrogen Production. Nanomaterials, 2022, 12, 1761.	4.1	3