Vytautas Martinaitis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5207750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Feasibility of CHP-plants with thermal stores in the German spot market. Applied Energy, 2009, 86, 2308-2316.	10.1	184
2	Importance of occupancy information when simulating energy demand of energy efficient house: A case study. Energy and Buildings, 2015, 101, 64-75.	6.7	99
3	A two-factor method for appraising building renovation and energy efficiency improvement projects. Energy Policy, 2007, 35, 192-201.	8.8	86
4	Evaluation of energy efficiency measures sustainability by decision tree method. Energy and Buildings, 2014, 76, 64-71.	6.7	78
5	Implementation strategy for small CHP-plants in a competitive market: the case of Lithuania. Applied Energy, 2005, 82, 214-227.	10.1	64
6	SEARCH FOR OPTIMAL SOLUTION OF PUBLIC BUILDING RENOVATION IN TERMS OF LIFE CYCLE. Journal of Environmental Engineering and Landscape Management, 2010, 18, 102-110.	1.0	38
7	The Framework of an Optimization Model for Building Envelope. Procedia Engineering, 2013, 57, 670-677.	1.2	38
8	ENERGY EFFICIENCY CHALLENGES IN MULTI-APARTMENT BUILDING RENOVATION IN LITHUANIA / IÅÅŪKIAI ENERGIJOS VARTOJIMO EFEKTYVUMUI VYKDANT DAUGIABUÄŒIŲ NAMŲ MODERNIZACIJÄ,, LIETUVOJE. Journal Engineering and Management, 2011, 17, 467-475.	of3C3vil	29
9	Degree-days for the exergy analysis of buildings. Energy and Buildings, 2010, 42, 1063-1069.	6.7	28
10	Validation of Unglazed Transpired Solar Collector Assisted Air Source Heat Pump Simulation Model. Energy Procedia, 2016, 95, 167-174.	1.8	19
11	The exergy efficiency assessment of heat recovery exchanger for air handling units, using a state property – Coenthalpy. Applied Thermal Engineering, 2016, 108, 388-397.	6.0	17
12	A comparative thermodynamic analysis of air handling units at variable reference temperature. Applied Thermal Engineering, 2018, 143, 385-395.	6.0	13
13	AN ESTIMATION OF EXERGY CONSUMPTION PATERNS OF ENERGYâ€INTENSIVE BUILDING SERVICE SYSTEMS. Journal of Civil Engineering and Management, 2006, 12, 37-42.	3.5	13
14	Concerning exergy efficiency evaluation of heat recovery exchangers for air handling units. International Journal of Exergy, 2016, 20, 381.	0.4	10
15	CORRECTION OF A DESIGNED BUILDING'S HEAT BALANCE ACCORDING TO ITS REAL HEAT CONSUMPTION. Journal of Civil Engineering and Management, 2003, 9, 98-103.	3.5	7
16	A QUANTITATIVE EVALUATION OF THEORETICAL RENEWABLE ENERGY POTENTIAL OF THE BUILDING SITE. Journal of Civil Engineering and Management, 2014, 20, 873-883.	3.5	5
17	Quantitative estimation of improvements in the efficiency of district heating substation control system. Building Services Engineering Research and Technology, 2015, 36, 455-468.	1.8	5
18	PARTICULARITIES OF DETERMINING PRIMARY ENERGY NEEDS FOR BUILDING MATERIALS. Journal of Civil Engineering and Management, 1997, 3, 35-43.	0.0	4

VYTAUTAS MARTINAITIS

#	Article	IF	CITATIONS
19	TECHNOLOGICAL MODEL OF BUILDING LIFE CYCLE. Journal of Civil Engineering and Management, 2001, 7, 73-77.	0.0	4
20	Energy performance of a clay tiles solar drying system. AIP Conference Proceedings, 2018, , .	0.4	4
21	From Entropy Generation to Exergy Efficiency at Varying Reference Environment Temperature: Case Study of an Air Handling Unit. Entropy, 2019, 21, 361.	2.2	4
22	A COMPARISON OF THE THERMODYNAMIC EFFICIENCY OF VACUUM TUBE AND FLAT PLATE SOLAR COLLECTOR SYSTEMS / VAKUUMINIŲ IR PLOKÅÄŒIŲJŲ SAULÄ–S KOLEKTORIŲ SISTEMŲ EKSERGINIŲ EFEKT PALYGINIMAS. Science: Future of Lithuania, 2013, 5, 404-409.	Ϋ́ØЩMŲ	3
23	Operation analysis of the developed building ventilation system using turbofans and mechanical wind energy storage. Building and Environment, 2021, 196, 107703.	6.9	3
24	Exergy efficiency of a ventilation heat recovery exchanger at a variable reference temperature. Mechanika, 2017, 23, .	0.5	3
25	FACTORS OF THERMODYNAMICAL APPROACH TO BUILDINGS LIFE CYCLE. Journal of Civil Engineering and Management, 1996, 2, 75-84.	0.0	2
26	Possibilities of Heat Pump Integration for the Renovation of Dwelling Houses. Environmental and Climate Technologies, 2011, 6, .	0.2	2
27	Functional exergy efficiency of an air heat recovery exchanger under varying environmental temperature. International Journal of Exergy, 2018, 25, 93.	0.4	2
28	Expressing the Building Energy Systems Thermodynamic Seasonal Efficiency. , 0, , .		2
29	Preliminary Comparison of the Performance of Thermodynamic Models of the Subsonic Ejector and Turbofan. Strojniski Vestnik/Journal of Mechanical Engineering, 2020, 66, 325-336.	1.1	2
30	THE DEMAND FOR EXERGY DURING THE LIFE CYCLE OF DWELLING HOUSES. Journal of Civil Engineering and Management, 1999, 5, 53-58.	0.0	1
31	EVALUATION OF REFURBISHMENT IN MULTI-FLAT BUILDINGS CONSIDERING TERNARY BENEFIT. Science: Future of Lithuania, 2011, 3, 98-104.	0.1	1
32	THE ANALYSIS OF THE INFLUENCE OF SUSTAINALBITY CRITERIA ON THE EVALUATION OF BUILDING RENOVATION / PASTATŲ ATNAUJINIMO DARNAUS VERTINIMO KRITERIJŲ ĮTAKOS ANALIZĖ. Science: Future of Lithuania, 2014, 6, 421-426.	f0.1	1
33	Analysis of seasonal exergy efficiency of an air handling unit. AIP Conference Proceedings, 2017, , .	0.4	1
34	Solar air heating system: design and dynamic simulation. IOP Conference Series: Materials Science and Engineering, 2018, 353, 012004.	0.6	1
35	Experimental Evaluation of Turbine Ventilators Performance under Different Test Conditions. E3S Web of Conferences, 2018, 64, 07003.	0.5	1
36	The model of sustainable management of building energy performance characteristics. , 2014, , .		1

36 The model of sustainable management of building energy performance characteristics. , 2014, , .

#	Article	IF	CITATIONS
37	Multi-objective optimization of shading solutions for a standard family house under Lithuanian conditions. , 2014, , .		1
38	Assessment of Exergy for Renewable Energy Disposable in the Site of Building. Environmental and Climate Technologies, 2011, 6, 147-153.	0.2	0
39	Simulation of Annual Functionality of Roof Turbine Ventilator. E3S Web of Conferences, 2018, 64, 07002.	0.5	0
40	Data File of the Building Site's Renewable Energy Characteristics. Springer Proceedings in Physics, 2014, , 405-410.	0.2	0
41	Thermodynamic simulation of solar thermal system. , 2014, , .		0
42	Functionality assessment of building a micro-climate system utilising solar energy in a cold climate. Strojniski Vestnik/Journal of Mechanical Engineering, 2019, , .	1.1	0