Zhe Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5207570/publications.pdf Version: 2024-02-01

ZUE CUEN

#	Article	IF	CITATIONS
1	Environmental effects on superlubricity of hydrogenated diamond-like carbon: Understanding tribochemical kinetics in O2 and H2O environments. Applied Surface Science, 2022, 580, 152299.	6.1	9
2	Flexural stress effect on mechanical and mechanochemical properties of soda lime silicate glass surface. Journal of the American Ceramic Society, 2022, 105, 2847-2857.	3.8	5
3	Friction of diamond-like carbon: Run-in behavior and environment effects on superlubricity. , 2021, , 275-288.		2
4	Origin of High Friction at Graphene Step Edges on Graphite. ACS Applied Materials & Interfaces, 2021, 13, 1895-1902.	8.0	16
5	Modeling of Formation and Removal of ZDDP Tribofilm on Rough Surfaces. Tribology Letters, 2021, 69, 1.	2.6	12
6	Electric Field-Induced Polarization Responses of Noncentrosymmetric Crystalline Biopolymers in Different Frequency Regimes – A Case Study on Unidirectionally Aligned β-Chitin Crystals. Biomacromolecules, 2021, 22, 1901-1909.	5.4	4
7	Measuring nanoscale friction at graphene step edges. Friction, 2020, 8, 802-811.	6.4	11
8	Identifying Physical and Chemical Contributions to Friction: A Comparative Study of Chemically Inert and Active Graphene Step Edges. ACS Applied Materials & Interfaces, 2020, 12, 30007-30015.	8.0	6
9	Anisotropic Optical and Frictional Properties of Langmuir–Blodgett Film Consisting of Uniaxiallyâ€Aligned Rodâ€Shaped Cellulose Nanocrystals. Advanced Materials Interfaces, 2020, 7, 1902169.	3.7	12
10	Hydrogen bonding interactions of H2O and SiOH on a boroaluminosilicate glass corroded in aqueous solution. Npj Materials Degradation, 2020, 4, .	5.8	64
11	Flash temperature and anti-wear tribofilm growth mechanisms by asperity contact in top-ring/liner conjunction of IC engines. Tribology International, 2020, 146, 106186.	5.9	12
12	Chemical and physical origins of friction on surfaces with atomic steps. Science Advances, 2019, 5, eaaw0513.	10.3	62
13	Atomic Force Microscopy (AFM) Analysis of an Object Larger and Sharper than the AFM Tip. Microscopy and Microanalysis, 2019, 25, 1106-1111.	0.4	13
14	Friction at single-layer graphene step edges due to chemical and topographic interactions. Carbon, 2019, 154, 67-73.	10.3	38
15	Effect of Atomic Corrugation on Adhesion and Friction: A Model Study with Graphene Step Edges. Journal of Physical Chemistry Letters, 2019, 10, 6455-6461.	4.6	15
16	Effect of Ambient Chemistry on Friction at the Basal Plane of Graphite. ACS Applied Materials & Interfaces, 2019, 11, 40800-40807.	8.0	10
17	Dissolution of silica component of glass network at early stage of corrosion in initially silicaâ€saturated solution. Journal of the American Ceramic Society, 2019, 102, 6649-6657.	3.8	9
18	Mechanism of Antiwear Property Under High Pressure of Synthetic Oil-Soluble Ultrathin MoS ₂ Sheets as Lubricant Additives. Langmuir, 2018, 34, 1635-1644.	3.5	43

ZHE CHEN

#	Article	IF	CITATIONS
19	Effect of Humidity on Friction and Wear—A Critical Review. Lubricants, 2018, 6, 74.	2.9	106
20	Insight into the Tribological Behavior of Liposomes in Artificial Joints. Langmuir, 2016, 32, 10957-10966.	3.5	23
21	Layered Double Hydroxide Nanoplatelets with Excellent Tribological Properties under High Contact Pressure as Water-Based Lubricant Additives. Scientific Reports, 2016, 6, 22748.	3.3	41
22	Tribological properties of few-layer graphene oxide sheets as oil-based lubricant additives. Chinese Journal of Mechanical Engineering (English Edition), 2016, 29, 439-444.	3.7	29
23	Superlubricity of nanodiamonds glycerol colloidal solution between steel surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489, 400-406.	4.7	43
24	Behavior and mechanism of ultralow friction of basil seed gel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489, 454-460.	4.7	20
25	Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants. Scientific Reports, 2015, 5, 12869.	3.3	140
26	Combined Effects of Structural Transformation and Hydrogen Passivation on the Frictional Behaviors of Hydrogenated Amorphous Carbon Films. Journal of Physical Chemistry C, 2015, 119, 16148-16155.	3.1	44
27	Growth mechanism of hydrogenated amorphous carbon films: Molecular dynamics simulations. Surface and Coatings Technology, 2014, 258, 901-907.	4.8	6
28	Mechanism of Biological Liquid Superlubricity of <i>Brasenia schreberi</i> Mucilage. Langmuir, 2014, 30, 3811-3816.	3.5	45
29	Controllable Superlubricity of Glycerol Solution via Environment Humidity. Langmuir, 2013, 29, 11924-11930.	3.5	50