Michael M Joachimski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/520753/publications.pdf

Version: 2024-02-01

170 papers

10,209 citations

52 h-index 96 g-index

177 all docs

177 docs citations

times ranked

177

5253 citing authors

#	Article	IF	Citations
1	Lethally Hot Temperatures During the Early Triassic Greenhouse. Science, 2012, 338, 366-370.	6.0	837
2	Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology, 2012, 40, 195-198.	2.0	495
3	Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth and Planetary Science Letters, 2009, 284, 599-609.	1.8	364
4	Climatic ups and downs in a disturbed Jurassic world. Geology, 2011, 39, 215-218.	2.0	309
5	Anoxic events in the late Frasnian—Causes of the Frasnian-Famennian faunal crisis?. Geology, 1993, 21, 675.	2.0	254
6	Conodont apatite \hat{l} 180 signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology, 2002, 30, 711.	2.0	211
7	Water column anoxia, enhanced productivity and concomitant changes in δ13C and δ34S across the Frasnian–Famennian boundary (Kowala — Holy Cross Mountains/Poland). Chemical Geology, 2001, 175, 109-131.	1.4	195
8	Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited. Gondwana Research, 2013, 24, 77-89.	3.0	195
9	Oxygen isotope fractionation in marine aragonite of coralline sponges. Geochimica Et Cosmochimica Acta, 2000, 64, 1695-1703.	1.6	194
10	Carbon, oxygen and strontium isotope records of Devonian brachiopod shell calcite. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240, 47-67.	1.0	188
11	Revised phosphate–water fractionation equation reassessing paleotemperatures derived from biogenic apatite. Earth and Planetary Science Letters, 2010, 298, 135-142.	1.8	183
12	Carbon isotope stratigraphy of the Devonian of Central and Southern Europe. Palaeogeography, Palaeoecology, 2006, 240, 68-88.	1.0	176
13	Oxygen isotope evolution of biogenic calcite and apatite during the Middle and Late Devonian. International Journal of Earth Sciences, 2004, 93, 542-553.	0.9	175
14	Carbon isotope geochemistry of the Frasnian–Famennian transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 181, 91-109.	1.0	169
15	Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: Evidence from neodymium and oxygen isotopes of fish teeth and belemnites. Earth and Planetary Science Letters, 2009, 286, 198-207.	1.8	153
16	Comparing oxygen isotope records of silurian calcite and phosphate—Î′18O compositions of brachiopods and conodonts. Geochimica Et Cosmochimica Acta, 2000, 64, 1859-1872.	1.6	152
17	Mississippian δ13Ccarb and conodont apatite δ18O records — Their relation to the Late Palaeozoic Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 268, 273-292.	1.0	152
18	Deciphering kinetic, metabolic and environmental controls on stable isotope fractionations between seawater and the shell of Terebratalia transversa (Brachiopoda). Chemical Geology, 2003, 202, 59-78.	1.4	139

#	Article	IF	CITATIONS
19	Constraints on Pennsylvanian glacioeustatic sea-level changes using oxygen isotopes of conodont apatite. Geology, 2006, 34, 277.	2.0	134
20	High-resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448, 26-38.	1.0	133
21	Lateglacial and Holocene environmental changes in Ganga plain, Northern India. Quaternary Science Reviews, 2004, 23, 145-159.	1.4	129
22	Geochemical evidence for major environmental change at the Devonian–Carboniferous boundary in the Carnic Alps and the Rhenish Massif. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240, 146-160.	1.0	129
23	Massive volcanism at the Permian–Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere. Journal of Asian Earth Sciences, 2010, 37, 293-311.	1.0	129
24	Reconstruction of late Bajocian–Bathonian marine palaeoenvironments using carbon and oxygen isotope ratios of calcareous fossils from the Polish Jura Chain (central Poland). Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254, 523-540.	1.0	120
25	Carbon and oxygen isotopic composition of Silurian brachiopods (Gotland/Sweden): palaeoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 122, 143-166.	1.0	119
26	Carbon, sulfur, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran. International Journal of Earth Sciences, 2004, 93, 565.	0.9	117
27	Global change in the Late Devonian: modelling the Frasnian–Famennian short-term carbon isotope excursions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 202, 309-329.	1.0	115
28	Subaerial exposure and deposition of shallowing upward sequences: evidence from stable isotopes of Purbeckian peritidal carbonates (basal Cretaceous), Swiss and French Jura Mountains. Sedimentology, 1994, 41, 805-824.	1.6	114
29	Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Research, 2014, 26, 675-683.	3.0	114
30	Chemostratigraphy. Newsletters on Stratigraphy, 2008, 42, 145-179.	0.5	109
31	Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China. Earth and Planetary Science Letters, 2016, 444, 88-100.	1.8	109
32	Did intense volcanism trigger the first Late Ordovician icehouse?. Geology, 2010, 38, 327-330.	2.0	104
33	Carboniferous–Permian carbon isotope stratigraphy of successions from China (Yangtze platform), USA (Kansas) and Russia (Moscow Basin and Urals). Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 301, 18-38.	1.0	96
34	Carbon isotope records from extant Caribbean and South Pacific sponges: Evolution of \hat{l} 13 C in surface water DIC. Earth and Planetary Science Letters, 1996, 139, 291-303.	1.8	95
35	Palaeoclimate reconstructions of the Middle Jurassic of Kachchh (western India): an integrated approach based on palaeoecological, oxygen isotopic, and clay mineralogical data. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 217, 289-309.	1.0	92
36	Coralline red algae as high-resolution climate recorders. Geology, 2008, 36, 463.	2.0	92

#	Article	IF	CITATIONS
37	Empirical calibration of the clumped isotope paleothermometer using calcites of various origins. Geochimica Et Cosmochimica Acta, 2014, 141, 127-144.	1.6	87
38	An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification. Bulletin of the Geological Society of America, 2015, 127, 1411-1421.	1.6	87
39	Carbon and conodont apatite oxygen isotope records of Guadalupian–Lopingian boundary sections: Climatic or sea-level signal?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 311, 145-153.	1.0	85
40	Palaeoclimate perturbations before the Sheinwoodian glaciation: A trigger for extinctions during the †Ireviken Event'. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 296, 320-331.	1.0	83
41	Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation. Geological Magazine, 2016, 153, 316-331.	0.9	78
42	Environmental crises at the Permian–Triassic mass extinction. Nature Reviews Earth & Environment, 2022, 3, 197-214.	12.2	78
43	Stratigraphic and oxygen isotope evidence for My-scale glaciation driving eustasy in the Early–Middle Devonian greenhouse world. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276, 170-181.	1.0	77
44	Climatic fluctuations and seasonality during the Late Jurassic (Oxfordian–Early Kimmeridgian) inferred from Î′18O of Paris Basin oyster shells. Earth and Planetary Science Letters, 2008, 273, 58-67.	1.8	73
45	Controls of mud mound formation: The Early Devonian Kess-Kess carbonates of the Hamar Laghdad, Antiatlas, Morocco. Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1992, 81, 15-44. Did climate changes trigger the Late Devonian Kellwasser Crisis? Evidence from a high-resolution	1.3	72
46	conodont <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup><mml:mrow><mml:mi>î'</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mi></mml:mi>O</mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><th>1.0</th><th>04</th></mml:msup></mml:math>	1.0	04
47	Farth and Planetary Science Letters, 2018, 495, 174-184. Ice volume and paleoclimate history of the Late Paleozoic Ice Age from conodont apatite oxygen isotopes from Naqing (Guizhou, China). Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448, 151-161.	1.0	62
48	Siberian Trap volcanism, global warming and the Permian-Triassic mass extinction: New insights from Armenian Permian-Triassic sections. Bulletin of the Geological Society of America, 2020, 132, 427-443.	1.6	62
49	Sr/Ca ratios and oxygen isotopes from sclerosponges: Temperature history of the Caribbean mixed layer and thermocline during the Little Ice Age. Paleoceanography, 2003, 18, n/a-n/a.	3.0	59
50	Palaeoenvironments of the late Triassic Rhaetian Sea: Implications from oxygen and strontium isotopes of hybodont shark teeth. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 353-355, 60-72.	1.0	58
51	The Valanginian isotope event: A complex suite of palaeoenvironmental perturbations. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 306, 41-57.	1.0	57
52	High amplitude redox changes in the late Early Triassic of South China and the Smithian–Spathian extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 427, 62-78.	1.0	56
53	Palaeoecology of Late Triassic Conodonts: Constraints from Oxygen Isotopes in Biogenic Apatite. Acta Palaeontologica Polonica, 2010, 55, 471-478.	0.4	54
54	Oxygen and strontium isotopes from fossil shark teeth: Environmental and ecological implications for Late Palaeozoic European basins. Chemical Geology, 2013, 342, 44-62.	1.4	54

#	Article	IF	CITATIONS
55	Coralline alga reveals first marine record of subarctic North Pacific climate change. Geophysical Research Letters, 2007, 34, .	1.5	52
56	STABLE ISOTOPES, ELEMENTAL DISTRIBUTION, AND GROWTH RINGS OF BELEMNOPSID BELEMNITE ROSTRA: PROXIES FOR BELEMNITE LIFE HABITAT. Palaios, 2009, 24, 377-386.	0.6	52
57	Boron isotope geochemistry of Paleozoic brachiopod calcite: Implications for a secular change in the boron isotope geochemistry of seawater over the Phanerozoic. Geochimica Et Cosmochimica Acta, 2005, 69, 4035-4044.	1.6	51
58	Contribution of microbialites to the development of coral reefs during the last deglacial period: Case study from Vanuatu (South-West Pacific). Sedimentary Geology, 2006, 185, 297-318.	1.0	51
59	Gradual onset of anoxia across the Permian–Triassic Boundary in Svalbard, Norway. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374, 303-313.	1.0	51
60	Are pooled tree ring δ13C and δ18O series reliable climate archives? — A case study of Pinus nigra spp. laricio (Corsica/France). Chemical Geology, 2012, 308-309, 40-49.	1.4	50
61	A new upper Middle Ordovician–Lower Silurian drillcore standard succession from Borenshult in Östergötland, southern Sweden: 2. Significance of Î′ ¹³ C chemostratigraphy. Gff, 2012, 134, 39-63.	0.4	49
62	Modeling the carbon and sulfur isotope compositions of marine sediments: Climate evolution during the Devonian. Chemical Geology, 2007, 246, 19-38.	1.4	48
63	Comparison of organic and inorganic carbon isotope patterns across the Frasnian–Famennian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132, 133-145.	1.0	47
64	Phytoplankton dynamics across the Ordovician/Silurian boundary at low palaeolatitudes: Correlations with carbon isotopic and glacial events. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 312, 79-97.	1.0	47
65	Twentieth century & amp; It; i& amp; gt; î & amp; It; /i& amp; gt; & amp; It; sup & amp; gt; 13 & amp; It; /sup & amp; gt; C variability in surface water dissolved inorganic carbon recorded by coralline algae in the northern North Pacific Ocean and the Bering Sea. Biogeosciences, 2011, 8, 165-174.	1.3	46
66	Surface-water freshening and high-latitude river discharge in the Eocene North Sea. Journal of the Geological Society, 2009, 166, 969-980.	0.9	45
67	Î 180 composition of conodont apatite indicates climatic cooling during the Middle Pridoli. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 294, 242-247.	1.0	45
68	Record of climate-driven morphological changes in 376 Ma Devonian fossils. Geology, 2008, 36, 907.	2.0	43
69	Evidence for a complex Valanginian nannoconid decline in the Vocontian basin (South East France). Marine Micropaleontology, 2012, 84-85, 37-53.	0.5	42
70	The onset of the Permo-Carboniferous glaciation: reconciling global stratigraphic evidence with biogenic apatite \hat{l} $<$ sup $>$ 18 $<$ /sup $>$ 0 records in the late Visean. Journal of the Geological Society, 2012, 169, 119-122.	0.9	39
71	Î13C chemostratigraphy in the upper Tremadocian through lower Katian (Ordovician) carbonate succession of the Siljan district, central Sweden; pp. 277–286. Estonian Journal of Earth Sciences, 2014, 63, 277.	0.4	39
72	Ammonium ocean following the end-Permian mass extinction. Earth and Planetary Science Letters, 2019, 518, 211-222.	1.8	39

#	Article	IF	CITATIONS
73	Stable isotope and trace element geochemistry of Upper Cretaceous carbonates and belemnite rostra (Middle Campanian, north Germany). Geobios, 2002, 35, 51-64.	0.7	37
74	Seasonal climatic fluctuations in the Late Triassic tropics—High-resolution oxygen isotope records from aragonitic bivalve shells (Cassian Formation, Northern Italy). Palaeogeography, Palaeoecology, 2010, 285, 194-204.	1.0	34
75	Was climatic cooling during the earliest Carboniferous driven by expansion of seed plants?. Earth and Planetary Science Letters, 2021, 565, 116953.	1.8	33
76	Oxygen Isotope Stratigraphy. , 2020, , 279-307.		33
77	Ocean temperatures through the Phanerozoic reassessed. Scientific Reports, 2022, 12, .	1.6	33
78	Comparison of whole wood and cellulose carbon and oxygen isotope series from Pinus nigra ssp. laricio (Corsica/France). Dendrochronologia, 2011, 29, 219-226.	1.0	32
79	Chemical and oxygen isotope composition of gem-quality apatites: Implications for oxygen isotope reference materials for secondary ion mass spectrometry (SIMS). Chemical Geology, 2016, 440, 164-178.	1.4	32
80	Carbonate mud mounds, conglomerates, and sea-level history in the Katian (Upper Ordovician) of central Sweden. Facies, 2010, 56, 157-172.	0.7	31
81	Marine carbonate facies in response to climate and nutrient level: The upper carboniferous and permian of central spitsbergen (Svalbard). Facies, 2001, 45, 93-135.	0.7	30
82	Carbon isotope chemostratigraphy and precise dating of middle Frasnian (lower Upper Devonian) Alamo Breccia, Nevada, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 282, 105-118.	1.0	30
83	δÂ ¹³ C chemostratigraphy in the Lower–Middle Ordovician succession of Öland (Sweden) and the global significance of the MDICE. Gff, 2014, 136, 48-54.	0.4	30
84	Permian (Artinskian to Wuchapingian) conodont biostratigraphy in the Tieqiao section, Laibin area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 465, 42-63.	1.0	30
85	Perturbations in the carbon cycle during the Carnian Humid Episode: carbonate carbon isotope records from southwestern China and northern Oman. Journal of the Geological Society, 2019, 176, 167-177.	0.9	30
86	Late Carboniferous to Late Permian carbon isotope stratigraphy: A new record from post-Variscan carbonates from the Southern Alps (Austria and Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 433, 174-190.	1.0	29
87	A multistratigraphic approach to pinpoint the Permian-Triassic boundary in continental deposits: The Zechstein–Lower Buntsandstein transition in Germany. Global and Planetary Change, 2017, 152, 129-151.	1.6	29
88	Oxygen isotopes of bovid teeth as archives of paleoclimatic variations in archaeological deposits of the Ganga plain, India. Quaternary Research, 2004, 62, 19-28.	1.0	28
89	Diagenetic alteration of the structure and $\hat{\Gamma}$ 18O signature of Palaeozoic fish and conodont apatite: Potential use for corrected isotope signatures in palaeoenvironmental interpretation. Chemical Geology, 2012, 298-299, 11-19.	1.4	28
90	Salinity contrast in the US Midcontinent Sea during Pennsylvanian glacio-eustatic highstands: Evidence from conodont apatite \hat{l} 18 O. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 433, 71-80.	1.0	27

#	Article	IF	CITATIONS
91	Five million years of high atmospheric CO2 in the aftermath of the Permian-Triassic mass extinction. Geology, 2022, 50, 650-654.	2.0	27
92	A close look at late carboniferous algal mounds: Schulterkofel, Carnic Alps, Austria. Facies, 2003, 49, 325-350.	0.7	26
93	Multistratigraphy of condensed ammonoid beds of the Rappoltstein (Berchtesgaden, southern) Tj ETQq1 1 0.784 Reingraben Event (Late Lower Carnian). Facies, 2007, 53, 267-292.	314 rgBT ₍ 0.7	/Overlock 10 25
94	The Jabali nonsulfide Zn–Pb–Ag deposit, western Yemen. Ore Geology Reviews, 2014, 61, 248-267.	1.1	25
95	Stable Isotope Signatures of Middle Palaeozoic Ahermatypic Rugose Corals – Deciphering Secondary Alteration, Vital Fractionation Effects, and Palaeoecological Implications. PLoS ONE, 2015, 10, e0136289.	1.1	25
96	Carnian–Norian (Late Triassic) climate change: Evidence from conodont oxygen isotope thermometry with implications for reef development and Wrangellian tectonics. Earth and Planetary Science Letters, 2020, 534, 116082.	1.8	25
97	Aturia from the Miocene Paratethys: An exceptional window on nautilid habitat and lifestyle. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308, 330-338.	1.0	24
98	A delayed end-Permian extinction in deep-water locations and its relationship to temperature trends (Bianyang, Guizhou Province, South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440, 690-695.	1.0	24
99	Conodont and carbon isotope stratigraphy near the Frasnian/Famennian (Devonian) boundary at Wulankeshun, Junggar Basin, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448, 279-297.	1.0	24
100	Integrated bio-chemostratigraphy of Lower and Middle Triassic marine successions at Spiti in the Indian Himalaya: Implications for the Early Triassic nutrient crisis. Global and Planetary Change, 2021, 196, 103363.	1.6	24
101	Mineralogical, geochemical and isotopic features of tuffs from the CFDDP drill hole: Hydrothermal activity in the eastern side of the Campi Flegrei volcano (southern Italy). Journal of Volcanology and Geothermal Research, 2015, 290, 39-52.	0.8	23
102	Low-latitude vegetation and climate dynamics at the Paleocene-Eocene transition $\hat{a} \in A$ study based on multiple proxies from the Jathang section in northeastern India. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 497, 139-156.	1.0	23
103	Combining wood anatomy and stable isotope variations in a 600-year multi-parameter climate reconstruction from Corsican black pine. Quaternary Science Reviews, 2014, 101, 146-158.	1.4	21
104	Integrated Cambrian biostratigraphy and carbon isotope chemostratigraphy of the Grönhögen-2015 drill core, Öland, Sweden. Geological Magazine, 2019, 156, 935-949.	0.9	21
105	Increased seasonality in the Gulf of Aqaba, Red Sea, recorded in the oxygen isotope record of aPorites lutea coral. Senckenbergiana Maritima, 1999, 30, 17-26.	0.5	20
106	A 560 yr summer temperature reconstruction for the Western Mediterranean basin based on stable carbon isotopes from <i>Pinus nigra<i> ssp. <i>laricio</i> (Corsica/France). Climate of the Past, 2012, 8, 1737-1749.</i></i>	1.3	20
107	The Karst-Hosted Mina Grande Nonsulfide Zinc Deposit, Bongar $ ilde{A}_i$ District (Amazonas Region, Peru). Economic Geology, 2017, 112, 1089-1110.	1.8	20
108	Chapter 8Productivity and bottom water redox conditions at the Frasnian-Famennian boundary on both sides of the Eovariscan Belt: constraints from trace-element geochemistry. Developments in Palaeontology and Stratigraphy, 2005, 20, 199-224.	0.1	19

#	Article	IF	CITATIONS
109	Paleogeographic differences in temperature, water depth and conodont biofacies during the Late Devonian. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 549, 108852.	1.0	19
110	Devonian paleoclimate and its drivers: A reassessment based on a new conodont \hat{l} 180 record from South China. Earth-Science Reviews, 2021, 222, 103814.	4.0	19
111	A major perturbation of the global carbon budget in the Early–Middle Frasnian transition (Late) Tj ETQq1 1 0.78	34314 rgB ⁻ 1.0	Γ <u>/</u> Qverlock
112	Lower–Middle Ordovician δ13C chemostratigraphy of western Baltica (JÃmtland, Sweden). Palaeoworld, 2015, 24, 110-122.	0.5	18
113	The Mid-Ludfordian (late Silurian) Glaciation: A link with global changes in ocean chemistry and ecosystem overturns. Earth-Science Reviews, 2021, 220, 103652.	4.0	18
114	Climate changes in the pre-Hirnantian Late Ordovician based on $\hat{l}'18$ Ophos studies from Estonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 569, 110347.	1.0	17
115	Hydrothermal origin of Devonian conical mounds (kess-kess) of Hamar Lakhdad Ridge, Anti-Atlas, Morocco: Comment and Reply. Geology, 1999, 27, 863.	2.0	16
116	A novel multiproxy approach to reconstruct the paleoecology of extinct cephalopods. Gondwana Research, 2019, 67, 64-81.	3.0	16
117	Sediment-derived origin of the putative Munnar carbonatite, South India. Journal of Asian Earth Sciences, 2020, 200, 104432.	1.0	16
118	Oxygen isotope evidence for the formation of silicic Kermadec island arc and Havre–Lau backarc magmas by fractional crystallisation. Earth and Planetary Science Letters, 2011, 309, 348-355.	1.8	15
119	Conodont biostratigraphy and palaeoenvironmental trends during the Famennian (Late Devonian) in the Thuringian Buschteich section (Germany). Newsletters on Stratigraphy, 2017, 50, 71-89.	0.5	15
120	Late Devonian carbon isotope chemostratigraphy: A new record from the offshore facies of South China. Global and Planetary Change, 2019, 182, 103024.	1.6	15
121	Stable and radiogenic isotope analyses on shark teeth from the Early to the Middle Permian (Sakmarian–Roadian) of the southwestern USA. Historical Biology, 2014, 26, 710-727.	0.7	14
122	Smithian and Spathian (Early Triassic) conodonts from Oman and Croatia and their depth habitat revealed. Global and Planetary Change, 2021, 196, 103362.	1.6	14
123	The Cristal Zn prospect (Amazonas region, Northern Peru). Part II: An example of supergene enrichments in tropical areas. Ore Geology Reviews, 2018, 95, 1076-1105.	1.1	13
124	Darriwilian (Middle Ordovician) chemostratigraphy linked to graptolite, conodont and trilobite biostratigraphy in the FÃ¥gelsÁ¥ng-3 drill core, Scania, Sweden. Gff, 2018, 140, 229-240.	0.4	13
125	Evaluation of high-frequency paleoenvironmental variation using an optimized cyclostratigraphic framework: Example for C-S-Fe analysis of Devonian-Mississippian black shales (Central Appalachian) Tj ETQq1 1 (D. 7184 314 r	gBT /Overlo
126	Cool episode and platform demise in the Early Aptian: New insights on the links between climate and carbonate production. Paleoceanography, 2016, 31, 66-80.	3.0	12

#	Article	IF	CITATIONS
127	Early Carnian conodont fauna at Yongyue, Zhenfeng area and its implication for Ladinian-Carnian subdivision in Guizhou, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486, 142-157.	1.0	12
128	Conodont biostratigraphy and carbon isotope stratigraphy of the Middle Ordovician (Darriwilian) Komstad Limestone, southern Sweden. Gff, 2018, 140, 44-54.	0.4	12
129	Mineralogical, compositional and isotope characterization of human kidney stones (urolithiasis) in a Sri Lankan population. Environmental Geochemistry and Health, 2019, 41, 1881-1894.	1.8	12
130	Zincian dolomite related to supergene alteration in the Iglesias mining district (SW Sardinia). International Journal of Earth Sciences, 2013, 102, 61-71.	0.9	10
131	A candidate for the Global Stratotype Section and Point at the base of the Serpukhovian in the South Urals, Russia. Stratigraphy and Geological Correlation, 2017, 25, 697-758.	0.2	10
132	The Cristal Zinc prospect (Amazonas region, northern Peru). Part I: New insights on the sulfide mineralization in the Bongará province. Ore Geology Reviews, 2018, 94, 261-276.	1.1	10
133	C–O Stable Isotopes Geochemistry of Tunisian Nonsulfide Zinc Deposits: A First Look. Minerals (Basel,) Tj ETQq	1 1 0.784 6.8	314 rgBT /0 10
134	Cretaceous seawater and hydrothermal fluid compositions recorded in abiogenic carbonates from the Troodos Ophiolite, Cyprus. Chemical Geology, 2018, 494, 43-55.	1.4	9
135	First record of the early Sheinwoodian carbon isotope excursion (ESCIE) from the Barrandian area of northwestern peri-Gondwana. Estonian Journal of Earth Sciences, 2015, 64, 42.	0.4	8
136	Assessing the fidelity of marine vertebrate microfossil $\hat{\Gamma}$ 180 signatures and their potential for palaeo-ecological and -climatic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 465, 79-92.	1.0	8
137	Fluorophlogopite-bearing and carbonate metamorphosed xenoliths from theCampanian Ignimbrite (Fiano, southern Italy): crystal chemical, geochemical and volcanological insights. Mineralogical Magazine, 2017, 81, 1165-1189.	0.6	8
138	Sequence stratigraphy, chemostratigraphy and facies analysis of Cambrian Series 2 – Series 3 boundary strata in northwestern Scotland. Geological Magazine, 2018, 155, 865-877.	0.9	8
139	Roadian-Wordian (Middle Permian) Conodont Biostratigraphy, Sedimentary Facies and Paleotemperature Evolution at the Shuixiakou Section, Xikou Area, Southeastern Qinling Region, China. Journal of Earth Science (Wuhan, China), 2021, 32, 534-553.	1.1	8
140	Paleotemperature record of the Middle Devonian Ka $ ilde{A}_i$ k Episode. Scientific Reports, 2021, 11, 16559.	1.6	8
141	Carbon and nitrogen isotope evidence for widespread presence of anoxic intermediate waters before and during the Permian-Triassic mass extinction. Bulletin of the Geological Society of America, 2022, 134, 1397-1413.	1.6	8
142	Late Devonian greenhouse-icehouse climate transition: New evidence from conodont Î 180 thermometry in the eastern Palaeotethys (Lali section, South China). Chemical Geology, 2021, 581, 120383.	1.4	8
143	Inter″aboratory Characterisation of Apatite Reference Materials for Oxygen Isotope Analysis and Associated Methodological Considerations. Geostandards and Geoanalytical Research, 2022, 46, 277-306.	1.7	8
144	Isotopic seawater temperatures in the Albian Gault Clay of the Boulonnais (Paris Basin): palaeoenvironmental implications. Proceedings of the Geologists Association, 2016, 127, 699-711.	0.6	7

#	Article	IF	Citations
145	From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Bergamo, Italy). Mineralium Deposita, 2020, 55, 953-970.	1.7	7
146	Middle to Late Ordovician carbon isotope chemostratigraphy of the Lower Yangtze Platform: Implications for global correlation. Geological Journal, 2021, 56, 2772-2784.	0.6	7
147	Carbon isotope chemostratigraphy and sea-level history of the Hirnantian Stage (uppermost) Tj ETQq1 1 0.78431	4 rgBT /Ov	verlock 10 Tf
148	Response to Comment on "Lethally Hot Temperatures During the Early Triassic Greenhouse". Science, 2013, 339, 1033-1033.	6.0	6
149	New CO isotopic data on supergene minerals from the Skorpion and Rosh Pinah ore deposits (Namibia): Genetic and paleoclimatic constraints. Journal of African Earth Sciences, 2017, 126, 148-158.	0.9	6
150	Oxygen and carbon stable isotope records of the Lochkovian-Pragian boundary interval from the Prague Basin (Lower Devonian, Czech Republic). Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560, 110036.	1.0	6
151	Role of seafloor production versus continental basalt weathering in Middle to Late Ordovician seawater 87Sr/86Sr and climate. Earth and Planetary Science Letters, 2022, 593, 117641.	1.8	6
152	Reply on Comment by Longinelli (2013) on a revised phosphate–water fractionation equation. Earth and Planetary Science Letters, 2013, 377-378, 380-382.	1.8	5
153	Digesting the data - Effects of predator ingestion on the oxygen isotopic signature of micro-mammal teeth. Quaternary Science Reviews, 2017, 176, 71-84.	1.4	5
154	Phosphorus Cycle and Primary Productivity Changes in the Tethys Ocean During the Permian-Triassic Transition: Starving Marine Ecosystems. Frontiers in Earth Science, 2022, 10, .	0.8	5
155	Faziesgesteuerte Diagenese am Beispiel des Korallen-Patchriffs von Laisacker (Untertithon, Sý dliche) Tj ETQq1	l 8:78431	4 ₄ gBT /Over
156	Roman Coarse Ware from Bavaria, Austria and Northern Italy. Hyperfine Interactions, 2004, 154, 231-251.	0.2	4
157	The history of the "Virgin with Child―sculpture (Ottaviano, Naples, southern Italy): Hypotheses from archaeometric multi-technique investigations. Journal of Cultural Heritage, 2014, 15, 414-423.	1.5	4
158	Hydrothermal controls on iron and lead mineralization on the farms Leeuwbosch and Cornwall, Thabazimbi District, South Africa. Ore Geology Reviews, 2014, 63, 40-63.	1.1	4
159	A carbonate carbon isotope record for the late Givetian (Middle Devonian) Global Taghanic Biocrisis in the type region (northern Appalachian Basin). Geological Society Special Publication, 2016, 423, 223-233.	0.8	4
160	Integration of Darriwilian (Middle Ordovician) δ13CorgÂchemostratigraphy with graptolite biostratigraphy in the classical Röstånga area in northwestern Scania (southern Sweden). Estonian Journal of Earth Sciences, 2020, 69, 121.	0.4	4
161	Facies, diagenesis and carbon isotopes of the Early Permian Gipshuken Formation (Svalbard). Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften, 2012, 163, 309-321.	0.1	3
162	C–O Stable Isotope Geochemistry of Carbonate Minerals in the Nonsulfide Zinc Deposits of the Middle East: A Review. Minerals (Basel, Switzerland), 2017, 7, 217.	0.8	3

#	Article	IF	CITATIONS
163	The environmental factors limiting the distribution of shallow-water terebratulid brachiopods. Paleobiology, 2020, 46, 193-217.	1.3	3
164	The Pb-Zn (Ba) Nonsulfide Mineralizations at Bou $\text{Ca}\tilde{\text{A}}^{-}\text{d}$ (Ouarsenis, Algeria): Mineralogy, Isotope Geochemistry, and Genetic Inferences. Minerals (Basel, Switzerland), 2021, 11, 687.	0.8	3
165	Genesis of the Florida Canyon Nonsulfide Zn Ores (Northern Peru): New Insights Into the Supergene Mineralizing Events of the BongarÃ; District. Economic Geology, 2022, 117, 1339-1366.	1.8	3
166	Siberian Trap volcanism, global warming and the Permian Triassic mass extinction: New insights from Armenian Permian-Triassic sections: Reply. Bulletin of the Geological Society of America, 2022, 134, 1087-1088.	1.6	2
167	Vertebrate diversity reveals perturbations in faunal communities prior to the Hangenberg event in the Montagne Noire (France). Bulletin of Geosciences, 2022, , 109-122.	0.5	2
168	Did intense volcanism trigger the first Late Ordovician icehouse? REPLY. Geology, 2011, 39, e238-e238.	2.0	1
169	Carbon and oxygen isotope fractionation in the Late Devonian heterocoral Oligophylloides: Implications for the skeletogenesis and evolution of the Heterocorallia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 598, 111017.	1.0	1

Fluid flow, alteration and mineralisation associated with the emplacement of the Lycian nappes (SW) Tj ETQq0 0 0 rgBT /Overlock 10 Tf