Yuezhan Feng

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5207522/yuezhan-feng-publications-by-year.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 162
 6,621
 49
 76

 papers
 citations
 h-index
 g-index

 168
 9,590
 10.7
 6.81

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
162	Unraveling the Intercorrelation Between Micro/Mesopores and K Migration Behavior in Hard Carbon <i>Small</i> , 2022 , e2107113	11	9
161	Phosphorous-Nitrogen flame retardants engineering MXene towards highly fire safe thermoplastic polyurethane. <i>Composites Communications</i> , 2022 , 29, 101055	6.7	14
160	Wood-Derived, Vertically Aligned, and Densely Interconnected 3D SiC Frameworks for Anisotropically Highly Thermoconductive Polymer Composites <i>Advanced Science</i> , 2022 , e2103592	13.6	2
159	Efficient thermal management of lithium-sulfur batteries by highly thermally conductive LBL-assembled composite separators. <i>Electrochimica Acta</i> , 2022 , 407, 139807	6.7	1
158	Iron selenide nanoparticles-encapsulated within bamboo-like N-doped carbon nanotubes as composite anodes for superior lithium and sodium-ion storage. <i>Chemical Engineering Journal</i> , 2022 , 435, 135185	14.7	O
157	Fe2P nanoparticles-doped carbon nanofibers with enhanced electrons transfer capability as a self-supporting anode for potassium-ion battery. <i>Electrochimica Acta</i> , 2022 , 404, 139759	6.7	1
156	Edge-enrich N-doped graphitic carbon: Boosting rate capability and cyclability for potassium ion battery. <i>Chemical Engineering Journal</i> , 2022 , 432, 134321	14.7	9
155	Carbon welding on graphene skeleton for phase change composites with high thermal conductivity for solar-to-heat conversion. <i>Chemical Engineering Journal</i> , 2022 , 427, 131665	14.7	7
154	MoS Decorated Silver Nanowire-Reduced Graphene Oxide Aerogel Micro-Particle for Thermally Conductive Polymer Composites with Enhanced Flame Retardancy <i>Macromolecular Rapid Communications</i> , 2022 , e2200026	4.8	
153	Heteroatom-doped carbon anode materials for potassium-ion batteries: From mechanism, synthesis to electrochemical performance. <i>APL Materials</i> , 2022 , 10, 030902	5.7	1
152	Flexible, thermostable and flame-resistant epoxy-based thermally conductive layered films with aligned ionic liquid-wrapped boron nitride nanosheets via cyclic layer-by-layer blade-casting. <i>Chemical Engineering Journal</i> , 2022 , 437, 135482	14.7	5
151	Electrically and thermally conductive Al2O3/C nanofiber membrane filled with organosilicon as a multifunctional integrated interlayer for lithium-sulfur batteries under lean-electrolyte and thermal gradient. <i>Chemical Engineering Journal</i> , 2022 , 442, 135825	14.7	0
150	Fine-tuning the electromagnetic parameters of 2D conjugated metal-organic framework semiconductors for anti-electromagnetic interference in the Ku band. <i>Chemical Engineering Journal</i> , 2022 , 444, 136574	14.7	1
149	A double crosslinking MXene/cellulose nanofiber layered film for improving mechanical properties and stable electromagnetic interference shielding performance. <i>Journal of Materials Science and Technology</i> , 2022 , 129, 127-134	9.1	0
148	MXene-Coated Wrinkled Fabrics for Stretchable and Multifunctional Electromagnetic Interference Shielding and Electro/Photo-Thermal Conversion Applications <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 60478-60488	9.5	8
147	Removal of Metal Ions in Phosphoric Acid by Electro-Electrodialysis with Cross-Linked Anion-Exchange Membranes <i>ACS Omega</i> , 2021 , 6, 32417-32430	3.9	
146	Constructing a three-dimensional nano-crystalline diamond network within polymer composites for enhanced thermal conductivity. <i>Nanoscale</i> , 2021 , 13, 18657-18664	7.7	1

(2021-2021)

145	Interfacial Kinetics Regulation of MoS /Cu Se Nanosheets toward Superior High-Rate and Ultralong-Lifespan Sodium-Ion Half/Full Batteries. <i>ChemSusChem</i> , 2021 , 14, 5304-5310	8.3	2
144	Architectural Engineering Achieves High-Performance Alloying Anodes for Lithium and Sodium Ion Batteries. <i>Small</i> , 2021 , 17, e2005248	11	12
143	NASICON Electrodes: A Low-Temperature Sodium-Ion Full Battery: Superb Kinetics and Cycling Stability (Adv. Funct. Mater. 11/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170070	15.6	
142	Fast and Reversible Na Intercalation in Nsutite-Type VO2 Hierarchitectures. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100191	4.6	2
141	Multifunctional Magnetic TiCT MXene/Graphene Aerogel with Superior Electromagnetic Wave Absorption Performance. <i>ACS Nano</i> , 2021 , 15, 6622-6632	16.7	144
140	2021 Roadmap: electrocatalysts for green catalytic processes. <i>JPhys Materials</i> , 2021 , 4, 022004	4.2	24
139	Ultrafast Potassium Storage in F-Induced Ultra-High Edge-Defective Carbon Nanosheets. <i>ACS Nano</i> , 2021 , 15, 10217-10227	16.7	27
138	Superhydrophobic cellulose acetate/multiwalled carbon nanotube monolith with fiber cluster network for selective oil/water separation. <i>Carbohydrate Polymers</i> , 2021 , 259, 117750	10.3	17
137	Induced assembly of polystyrene composites for simultaneously improving flame retardant and electromagnetic shielding properties. <i>Polymers for Advanced Technologies</i> , 2021 , 32, 4251	3.2	2
136	Gas sensing materials roadmap. Journal of Physics Condensed Matter, 2021, 33,	1.8	15
135	Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries. <i>Matter</i> , 2021 , 4, 1768-1800	12.7	18
134	Flexible and robust porous thermoplastic polyurethane/reduced graphene oxide monolith with special wettability for continuous oil/water separation in harsh environment. <i>Separation and Purification Technology</i> , 2021 , 266, 118553	8.3	8
133	Scalable manufacturing of flexible, durable Ti3C2Tx MXene/Polyvinylidene fluoride film for multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. <i>Composites Part B: Engineering</i> , 2021 , 217, 108902	10	27
132	S-Doped Carbon-Coated FeS2/C@C Nanorods for Potassium Storage. <i>Acta Metallurgica Sinica</i> (English Letters), 2021 , 34, 321-328	2.5	10
131	Stabilization Perspective on Metal Anodes for Aqueous Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2000962	21.8	51
130	Fe, V-co-doped C2N for electrocatalytic N2-to-NH3 conversion. <i>Journal of Energy Chemistry</i> , 2021 , 53, 303-308	12	23
129	Dependence of electromagnetic wave absorption properties on the topography of Ni anchoring on reduced graphene oxide. <i>Chinese Chemical Letters</i> , 2021 , 32, 870-874	8.1	7
128	Post-Lithium-Ion Battery Era: Recent Advances in Rechargeable Potassium-Ion Batteries. <i>Chemistry</i> - A European Journal, 2021 , 27, 512-536	4.8	12

127	Electrolytes Enriched by Crown Ethers for Lithium Metal Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2002578	15.6	58
126	Transition metal carbides in electrocatalytic oxygen evolution reaction. <i>Chinese Chemical Letters</i> , 2021 , 32, 291-298	8.1	29
125	Mesoporous carbon nanosheet-assembled flowers towards superior potassium storage. <i>Chinese Chemical Letters</i> , 2021 , 32, 1161-1164	8.1	11
124	Gallium-based anodes for alkali metal ion batteries. <i>Journal of Energy Chemistry</i> , 2021 , 55, 557-571	12	6
123	Layer-by-layer self-assembled covalent triazine framework/electrical conductive polymer functional separator for Li-S battery. <i>Chemical Engineering Journal</i> , 2021 , 404, 127044	14.7	12
122	Highly flame-retardant epoxy-based thermal conductive composites with functionalized boron nitride nanosheets exfoliated by one-step ball milling. <i>Chemical Engineering Journal</i> , 2021 , 407, 127099	14.7	38
121	Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries. <i>Science Bulletin</i> , 2021 , 66, 685-693	10.6	89
120	Highly thermally conductive yet mechanically robust composites with nacre-mimetic structure prepared by evaporation-induced self-assembly approach. <i>Chemical Engineering Journal</i> , 2021 , 405, 126	865 ⁷	14
119	CTF/MWCNT hybrid multi-functional separator as high-efficiency polysulfide tamer for high-performance LiB battery. <i>Electrochimica Acta</i> , 2021 , 367, 137418	6.7	7
118	Carbon-based materials for all-solid-state zinclir batteries 2021 , 3, 50-65		19
118	Carbon-based materials for all-solid-state zinclir batteries 2021 , 3, 50-65 Vanadate-based electrodes for rechargeable batteries. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 1585-160	9 7.8	19 5
		,	
117	Vanadate-based electrodes for rechargeable batteries. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 1585-160. A Low-Temperature Sodium-Ion Full Battery: Superb Kinetics and Cycling Stability. <i>Advanced</i>	<u></u>	5
117 116	Vanadate-based electrodes for rechargeable batteries. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 1585-160. A Low-Temperature Sodium-Ion Full Battery: Superb Kinetics and Cycling Stability. <i>Advanced Functional Materials</i> , 2021 , 31, 2009458 Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding.	15.6	5 32
117 116	Vanadate-based electrodes for rechargeable batteries. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 1585-160. A Low-Temperature Sodium-Ion Full Battery: Superb Kinetics and Cycling Stability. <i>Advanced Functional Materials</i> , 2021 , 31, 2009458 Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding. <i>Journal of Colloid and Interface Science</i> , 2021 , 583, 571-578 Highly thermally conductive polyvinyl alcohol/boron nitride nanocomposites with interconnection	15.6 9·3	5 32 42
117 116 115	Vanadate-based electrodes for rechargeable batteries. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 1585-160 A Low-Temperature Sodium-Ion Full Battery: Superb Kinetics and Cycling Stability. <i>Advanced Functional Materials</i> , 2021 , 31, 2009458 Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding. <i>Journal of Colloid and Interface Science</i> , 2021 , 583, 571-578 Highly thermally conductive polyvinyl alcohol/boron nitride nanocomposites with interconnection oriented boron nitride nanoplatelets. <i>Composites Science and Technology</i> , 2021 , 201, 108521 Flexible hydrophobic 2D Ti3C2Tx-based transparent conductive film with multifunctional self-cleaning, electromagnetic interference shielding and joule heating capacities. <i>Composites</i>	15.6 9.3 8.6	5 32 42 20
117 116 115 114	Vanadate-based electrodes for rechargeable batteries. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 1585-160 A Low-Temperature Sodium-Ion Full Battery: Superb Kinetics and Cycling Stability. <i>Advanced Functional Materials</i> , 2021 , 31, 2009458 Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding. <i>Journal of Colloid and Interface Science</i> , 2021 , 583, 571-578 Highly thermally conductive polyvinyl alcohol/boron nitride nanocomposites with interconnection oriented boron nitride nanoplatelets. <i>Composites Science and Technology</i> , 2021 , 201, 108521 Flexible hydrophobic 2D Ti3C2Tx-based transparent conductive film with multifunctional self-cleaning, electromagnetic interference shielding and joule heating capacities. <i>Composites Science and Technology</i> , 2021 , 201, 108531 Magnetic, superelastic and superhydrophobic porous thermoplastic polyurethane monolith with nano-Fe3O4 coating for highly selective and easy-recycling oil/water separation. <i>Applied Surface</i>	15.6 9.3 8.6 8.6	5 32 42 20 29

(2020-2021)

109	In situ construction of active interfaces towards improved high-rate performance of CoSe2. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 14582-14592	13	9
108	Flexible Transparent Polypyrrole-Decorated MXene-Based Film with Excellent Photothermal Energy Conversion Performance. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 8909-8918	9.5	9
107	Roadmap on Ionic Liquid Electrolytes for Energy Storage Devices. <i>Chemistry - an Asian Journal</i> , 2021 , 16, 549-562	4.5	12
106	Sandwiched cellulose nanofiber /boron nitride nanosheet /Ti3C2Tx MXene composite film with high electromagnetic shielding and thermal conductivity yet insulation performance. <i>Composites Science and Technology</i> , 2021 , 214, 108974	8.6	13
105	Black phosphorene-cellulose nanofiber hybrid paper as flexible heat spreader. <i>2D Materials</i> , 2021 , 8, 045029	5.9	2
104	Recent progress in electrochemical performance of carbon-based anodes for potassium-ion batteries based on first principles calculations. <i>Nanotechnology</i> , 2021 , 32,	3.4	2
103	High-performance and robust dual-function electrochromic device for dynamic thermal regulation and electromagnetic interference shielding. <i>Chemical Engineering Journal</i> , 2021 , 422, 130064	14.7	3
102	Aramid nanofiber-derived carbon aerogel film with skin-core structure for high electromagnetic interference shielding and solar-thermal conversion. <i>Carbon</i> , 2021 , 184, 562-570	10.4	16
101	Highly efficient MXene/Nano-Cu smoke suppressant towards reducing fire hazards of thermoplastic polyurethane. <i>Composites Part A: Applied Science and Manufacturing</i> , 2021 , 150, 106600	8.4	26
100	Fire/heat-resistant, anti-corrosion and folding Ti2C3Tx MXene/single-walled carbon nanotube films for extreme-environmental EMI shielding and solar-thermal conversion applications. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 10425-10434	7.1	15
99	Red Phosphorous-Derived Protective Layers with High Ionic Conductivity and Mechanical Strength on Dendrite-Free Sodium and Potassium Metal Anodes. <i>Advanced Energy Materials</i> , 2021 , 11, 2003381	21.8	37
98	Creating MXene/reduced graphene oxide hybrid towards highly fire safe thermoplastic polyurethane nanocomposites. <i>Composites Part B: Engineering</i> , 2020 , 203, 108486	10	68
97	Understanding the effect of interfacial engineering on interfacial thermal resistance in nacre-like cellulose nanofiber/graphene film. <i>Composites Science and Technology</i> , 2020 , 197, 108229	8.6	32
96	Advances in K-Q (Q = S, Se and Se S) batteries. <i>Materials Today</i> , 2020 , 39, 9-22	21.8	13
95	In-situ shear exfoliation and thermal conductivity of SBS/Graphite nanoplatelet nanocomposites. <i>Composites Part B: Engineering</i> , 2020 , 197, 108172	10	10
94	Cellulose acetate monolith with hierarchical micro/nano-porous structure showing superior hydrophobicity for oil/water separation. <i>Carbohydrate Polymers</i> , 2020 , 241, 116361	10.3	15
93	Research progress on hybrid organic[horganic perovskites for photo-applications. <i>Chinese Chemical Letters</i> , 2020 , 31, 3055-3064	8.1	15
92	The Synergetic Effect of Lithium Bisoxalatodifluorophosphate and Fluoroethylene Carbonate on Dendrite Suppression for Fast Charging Lithium Metal Batteries. <i>Small</i> , 2020 , 16, e2001989	11	15

91	Lithium Difluorophosphate-Based Dual-Salt Low Concentration Electrolytes for Lithium Metal Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2001440	21.8	53
90	Multilayer polyethylene/ hexagonal boron nitride composites showing high neutron shielding efficiency and thermal conductivity. <i>Composites Communications</i> , 2020 , 19, 147-153	6.7	29
89	A High-Capacity Ammonium Vanadate Cathode for Zinc-Ion Battery. <i>Nano-Micro Letters</i> , 2020 , 12, 67	19.5	48
88	Superhydrophobic and superelastic thermoplastic polyurethane/multiwalled carbon nanotubes porous monolith for durable oil/water separation. <i>Composites Communications</i> , 2020 , 21, 100378	6.7	34
87	Regulating Lithium Nucleation and Deposition via MOF-Derived Co@C-Modified Carbon Cloth for Stable Li Metal Anode. <i>Advanced Functional Materials</i> , 2020 , 30, 1909159	15.6	87
86	Co-doped graphene edge for enhanced N2-to-NH3 conversion. <i>Journal of Energy Chemistry</i> , 2020 , 48, 322-327	12	28
85	A High-Temperature Na-Ion Battery: Boosting the Rate Capability and Cycle Life by Structure Engineering. <i>Small</i> , 2020 , 16, e1906669	11	21
84	Advantageous Functional Integration of Adsorption-Intercalation-Conversion Hybrid Mechanisms in 3D Flexible Nb2O5@Hard Carbon@MoS2@Soft Carbon Fiber Paper Anodes for Ultrafast and Super-Stable Sodium Storage. <i>Advanced Functional Materials</i> , 2020 , 30, 1908665	15.6	43
83	Sodium/Potassium-Ion Batteries: Boosting the Rate Capability and Cycle Life by Combining Morphology, Defect and Structure Engineering. <i>Advanced Materials</i> , 2020 , 32, e1904320	24	191
82	Flexible polyvinylidene fluoride film with alternating oriented graphene/Ni nanochains for electromagnetic interference shielding and thermal management. <i>Chemical Engineering Journal</i> , 2020 , 395, 125209	14.7	74
81	Two-Dimensional Germanium Sulfide Nanosheets as an Ultra-Stable and High Capacity Anode for Lithium Ion Batteries. <i>Chemistry - A European Journal</i> , 2020 , 26, 6554-6560	4.8	7
80	Metal Chalcogenides: Metal Chalcogenides: Paving the Way for High-Performance Sodium/Potassium-Ion Batteries (Small Methods 1/2020). <i>Small Methods</i> , 2020 , 4, 2070002	12.8	1
79	Promoted CO2 electroreduction over indium-doped SnP3: A computational study. <i>Journal of Energy Chemistry</i> , 2020 , 48, 1-6	12	14
78	Electrospun Sb2Se3@C nanofibers with excellent lithium storage properties. <i>Chinese Chemical Letters</i> , 2020 , 31, 909-914	8.1	27
77	Necklace-like carbon nanofibers encapsulating V3S4 microspheres for ultrafast and stable potassium-ion storage. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 2618-2626	13	56
76	Optimizing the Void Size of Yolk-Shell Bi@Void@C Nanospheres for High-Power-Density Sodium-Ion Batteries. <i>Nano Letters</i> , 2020 , 20, 758-767	11.5	78
75	Enhanced Electromagnetic Wave-Absorbing Performance of Magnetic Nanoparticles-Anchored 2D TiCT MXene. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 2644-2654	9.5	98
74	Electronic Structure Regulation of Layered Vanadium Oxide via Interlayer Doping Strategy toward Superior High-Rate and Low-Temperature Zinc-Ion Batteries. <i>Advanced Functional Materials</i> , 2020 , 20, 1907694	15.6	131

(2019-2020)

73	Effects of selective distribution of alumina micro-particles on rheological, mechanical and thermal conductive properties of asphalt/SBS/alumina composites. <i>Composites Science and Technology</i> , 2020 , 186, 107917	8.6	14
72	Flexible, Robust, and Multifunctional Electromagnetic Interference Shielding Film with Alternating Cellulose Nanofiber and MXene Layers. <i>ACS Applied Materials & Description of the English Action Science (Control of the English Action Science)</i> 12, 4895-4905	9.5	183
71	Topotactic Transformation Synthesis of 2D Ultrathin GeS Nanosheets toward High-Rate and High-Energy-Density Sodium-Ion Half/Full Batteries. <i>ACS Nano</i> , 2020 , 14, 531-540	16.7	41
70	Simultaneously reinforcing and toughening poly(lactic acid) by incorporating reactive melt-functionalized silica nanoparticles. <i>Journal of Applied Polymer Science</i> , 2020 , 137, 48834	2.9	4
69	A Dual-Functional Conductive Framework Embedded with TiN-VN Heterostructures for Highly Efficient Polysulfide and Lithium Regulation toward Stable Li-S Full Batteries. <i>Advanced Materials</i> , 2020 , 32, e1905658	24	154
68	2-(Trifluoroacetyl) thiophene as an electrolyte additive for high-voltage lithium-ion batteries using LiCoO2 cathode. <i>Journal of Materials Science and Technology</i> , 2020 , 55, 198-202	9.1	9
67	Bio-inspired stem-like composites based on highly aligned SiC nanowires. <i>Chemical Engineering Journal</i> , 2020 , 389, 123466	14.7	10
66	Flexible and alternant-layered cellulose nanofiber/graphene film with superior thermal conductivity and efficient electromagnetic interference shielding. <i>Composites Part A: Applied Science and Manufacturing</i> , 2020 , 139, 106134	8.4	41
65	Self-Formed Electronic/Ionic Conductive Fe S @ S @ 0.9Na SbS ?0.1NaI Composite for High-Performance Room-Temperature All-Solid-State Sodium-Sulfur Battery. <i>Small</i> , 2020 , 16, e2001574	1 ¹¹	23
64	Metal-organic framework derived amorphous VO coated FeO/C hierarchical nanospindle as anode material for superior lithium-ion batteries. <i>Nanoscale</i> , 2020 , 12, 16901-16909	7.7	11
63	Fabrication of hierarchically porous superhydrophilic polycaprolactone monolith based on nonsolvent-thermally induced phase separation <i>RSC Advances</i> , 2020 , 10, 26319-26325	3.7	6
62	Flexible MXene/Silver Nanowire-Based Transparent Conductive Film with Electromagnetic Interference Shielding and Electro-Photo-Thermal Performance. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2020 , 12, 40859-40869	9.5	117
61	VOPO4?2H2O Nanosheet Cathode for Enhanced Sodium Storage. <i>Frontiers in Energy Research</i> , 2020 , 8,	3.8	5
60	Metal Chalcogenides: Paving the Way for High-Performance Sodium/Potassium-Ion Batteries. <i>Small Methods</i> , 2020 , 4, 1900563	12.8	97
59	Multiple synergistic effects of graphene-based hybrid and hexagonal born nitride in enhancing thermal conductivity and flame retardancy of epoxy. <i>Chemical Engineering Journal</i> , 2020 , 379, 122402	14.7	65
58	Boosting the potassium storage performance of carbon anode via integration of adsorption-intercalation hybrid mechanisms. <i>Nano Energy</i> , 2020 , 73, 104807	17.1	31
57	A Mixed Lithium-Ion Conductive Li2S/Li2Se Protection Layer for Stable Lithium Metal Anode. <i>Advanced Functional Materials</i> , 2020 , 30, 2001607	15.6	83
56	RuO Particles Anchored on Brush-Like 3D Carbon Cloth Guide Homogenous Li/Na Nucleation Framework for Stable Li/Na Anode. <i>Small</i> , 2019 , 15, e1903725	11	21

55	The Promise and Challenge of Phosphorus-Based Composites as Anode Materials for Potassium-Ion Batteries. <i>Advanced Materials</i> , 2019 , 31, e1901414	24	105
54	Oxyvanite V3O5: A new intercalation-type anode for lithium-ion battery. <i>Informal</i> Materily, 2019 , 1, 251	23.1	87
53	Promising TiCT MXene/Ni Chain Hybrid with Excellent Electromagnetic Wave Absorption and Shielding Capacity. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 25399-25409	9.5	183
52	Self-Supported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for High-Energy-Density Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2019 , 31, e1902228	24	149
51	Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries. Journal of Materials Chemistry A, 2019 , 7, 15774-15781	13	57
50	Boosting Sodium Storage in TiF3/Carbon Core/Sheath Nanofibers through an Efficient Mixed-Conducting Network. <i>Advanced Energy Materials</i> , 2019 , 9, 1901470	21.8	13
49	Regeneration, degradation, and toxicity effect of MOFs: Opportunities and challenges. <i>Environmental Research</i> , 2019 , 176, 108488	7.9	78
48	Cobalt-based electrode materials for sodium-ion batteries. <i>Chemical Engineering Journal</i> , 2019 , 370, 18	5 - 1240 <i>7</i>	87
47	Fast electrochemical kinetics and strong polysulfide adsorption by a highly oriented MoS2 nanosheet@N-doped carbon interlayer for lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7897-7906	13	68
46	SiO2@MoS2 coreEhell nanocomposite layers with high lithium ion diffusion as a triple polysulfide shield for high performance lithiumEulfur batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7644-765	3 ¹³	47
45	Mesoporous silica nanoplates facilitating fast Li+ diffusion as effective polysulfide-trapping materials for lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 9110-9119	13	17
44	Sodium-based batteries: from critical materials to battery systems. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 9406-9431	13	125
43	LithiumBulfur Batteries: Self-Supported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for High-Energy-Density LithiumBulfur Batteries (Adv. Mater. 33/2019). <i>Advanced Materials</i> , 2019 , 31, 1970236	24	8
42	Three-Dimensional Ordered Macroporous Metal-Organic Framework Single Crystal-Derived Nitrogen-Doped Hierarchical Porous Carbon for High-Performance Potassium-Ion Batteries. <i>Nano Letters</i> , 2019 , 19, 4965-4973	11.5	152
41	A Novel Protective Strategy on High-Voltage LiCoO2 Cathode for Fast Charging Applications: Li1.6Mg1.6Sn2.8O8 Double Layer Structure via SnO2 Surface Modification. <i>Small Methods</i> , 2019 , 3, 190	03358	11
40	Recent advances in cathode materials for rechargeable lithium-sulfur batteries. <i>Nanoscale</i> , 2019 , 11, 15418-15439	7.7	78
39	Mechanistic Understanding of Metal Phosphide Host for Sulfur Cathode in High-Energy-Density Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2019 , 13, 8986-8996	16.7	129
38	Superelastic and Durable Hierarchical Porous Thermoplastic Polyurethane Monolith with Excellent Hydrophobicity for Highly Efficient Oil/Water Separation. <i>Industrial & Discrete Manager Communication Communication</i>	3.9	17

(2018-2019)

37	Ultrathin, flexible transparent Joule heater with fast response time based on single-walled carbon nanotubes/poly(vinyl alcohol) film. <i>Composites Science and Technology</i> , 2019 , 183, 107796	8.6	47
36	Thermal Degradation Behavior and Kinetics of 3D Porous Polycarbonate Monoliths. <i>Macromolecular Materials and Engineering</i> , 2019 , 304, 1800667	3.9	10
35	Enhancing thermal oxidation and fire resistance of reduced graphene oxide by phosphorus and nitrogen co-doping: Mechanism and kinetic analysis. <i>Carbon</i> , 2019 , 146, 650-659	10.4	60
34	Nacre-inspired Polymer Nanocomposites with High-performance and Multifunctional Properties Realized by a Facile Evaporation-induced Self-assembly Approach. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 19787-19798	8.3	6
33	Potassium-Ion Batteries: The Promise and Challenge of Phosphorus-Based Composites as Anode Materials for Potassium-Ion Batteries (Adv. Mater. 50/2019). <i>Advanced Materials</i> , 2019 , 31, 1970354	24	1
32	Enhanced interfacial and mechanical property of biodegradable poly(butylene succinate) film via introducing ultrahigh molecular weight polyethylene shish-kebab fibers. <i>Materials Research Express</i> , 2019 , 6, 125374	1.7	2
31	Poly(ethylene oxide)-based composite polymer electrolytes embedding with ionic bond modified nanoparticles for all-solid-state lithium-ion battery. <i>Journal of Membrane Science</i> , 2019 , 575, 200-208	9.6	67
30	UV-curable boron nitride nanosheet/ionic liquid-based crosslinked composite polymer electrolyte in lithium metal batteries. <i>Journal of Power Sources</i> , 2019 , 414, 283-292	8.9	26
29	A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11725-11733	13	102
28	Enhanced thermal conductivity and ideal dielectric properties of epoxy composites containing polymer modified hexagonal boron nitride. <i>Composites Part A: Applied Science and Manufacturing</i> , 2018 , 107, 657-664	8.4	85
27	Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene. <i>Journal of Hazardous Materials</i> , 2018 , 346, 140-151	12.8	126
26	Multi-functional interface tailoring for enhancing thermal conductivity, flame retardancy and dynamic mechanical property of epoxy/Al2O3 composites. <i>Composites Science and Technology</i> , 2018 , 160, 42-49	8.6	74
25	Zinc/Nickel-Doped Hollow Core-Shell Co O Derived from a Metal-Organic Framework with High Capacity, Stability, and Rate Performance in Lithium/Sodium-Ion Batteries. <i>Chemistry - A European Journal</i> , 2018 , 24, 1651-1656	4.8	32
24	Superhydrophobic and superoleophilic porous reduced graphene oxide/polycarbonate monoliths for high-efficiency oil/water separation. <i>Journal of Hazardous Materials</i> , 2018 , 344, 849-856	12.8	98
23	Ultralow-Carbon Nanotube-Toughened Epoxy: The Critical Role of a Double-Layer Interface. <i>ACS Applied Materials & Applied & Applied Materials & Applied & Ap</i>	9.5	30
22	Highly thermally conductive flame retardant epoxy nanocomposites with multifunctional ionic liquid flame retardant-functionalized boron nitride nanosheets. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 20500-20512	13	63
21	Controlling the morphology, size and phase of Nb2O5 crystals for high electrochemical performance. <i>Chinese Chemical Letters</i> , 2018 , 29, 1785-1790	8.1	44
20	Ultralight Layer-by-Layer Self-Assembled MoS2-Polymer Modified Separator for Simultaneously Trapping Polysulfides and Suppressing Lithium Dendrites. <i>Advanced Energy Materials</i> , 2018 , 8, 1802430	21.8	135

19	Scalable Approach to Construct Self-Assembled Graphene-Based Films with An Ordered Structure for Thermal Management. <i>ACS Applied Materials & District Self-Assembled Graphene-Based Films with An Ordered Structure for Thermal Management. ACS Applied Materials & District Self-Assembled Graphene-Based Films with An Ordered Structure for Thermal Management. ACS Applied Materials & District Self-Assembled Graphene-Based Films with An Ordered Structure for Thermal Management. ACS Applied Materials & District Self-Assembled Graphene-Based Films with An Ordered Structure for Thermal Management. ACS Applied Materials & District Self-Assembled Graphene-Based Films with An Ordered Structure for Thermal Management. ACS Applied Materials & District Self-Assembled Graphene-Based Films with An Ordered Structure for Thermal Management. ACS Applied Materials & District Self-Assembled Graphene-Based Films with An Ordered Structure for Thermal Management. ACS Applied Materials & District Self-Assembled Graphene-Based Films With An Ordered Self-Ass</i>	9.5	19
18	Superhydrophobic/Superoleophilic Polycarbonate/Carbon Nanotubes Porous Monolith for Selective Oil Adsorption from Water. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 13747-13755	8.3	158
17	Synergetic Improvement in Thermal Conductivity and Flame Retardancy of Epoxy/Silver Nanowires Composites by Incorporating "Branch-Like" Flame-Retardant Functionalized Graphene. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 21628-21641	9.5	100
16	Flexible OrganicIhorganic Hybrid Solid Electrolytes Formed via ThiolAcrylate Photopolymerization. <i>Macromolecules</i> , 2017 , 50, 1970-1980	5.5	72
15	Simultaneous improvement in the flame resistance and thermal conductivity of epoxy/Al2O3 composites by incorporating polymeric flame retardant-functionalized graphene. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 13544-13556	13	114
14	Improving thermal and flame retardant properties of epoxy resin by functionalized graphene containing phosphorous, nitrogen and silicon elements. <i>Composites Part A: Applied Science and Manufacturing</i> , 2017 , 103, 74-83	8.4	114
13	A promising nanohybrid of silicon carbide nanowires scrolled by graphene oxide sheets with a synergistic effect for poly(propylene carbonate) nanocomposites. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 22361-22371	13	20
12	Noncovalent immobilization of pyrene-terminated hyperbranched triazole-based polymeric ionic liquid onto graphene for highly active and recyclable catalysis of CO2/epoxide cycloaddition. <i>Catalysis Science and Technology</i> , 2017 , 7, 4173-4181	5.5	9
11	Low-voltage-driven and highly-diffractive holographic polymer dispersed liquid crystals with spherical morphology. <i>RSC Advances</i> , 2017 , 7, 51847-51857	3.7	6
10	Hydrophobic polycarbonate monolith with mesoporous nest-like structure: an effective oil sorbent. <i>Materials Letters</i> , 2017 , 188, 201-204	3.3	25
9	Well-structured holographic polymer dispersed liquid crystals by employing acrylamide and doping ZnS nanoparticles. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 294-303	7.8	19
8	A facile strategy for functionalizing silica nanoparticles by polycarbonate degradation and its application in polymer nanocomposites. <i>Polymer Degradation and Stability</i> , 2015 , 119, 295-298	4.7	15
7	Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries. Journal of Membrane Science, 2015 , 491, 82-89	9.6	134
6	Effects of modified silica on morphology, mechanical property, and thermostability of injection-molded polycarbonate/silica nanocomposites. <i>Journal of Reinforced Plastics and Composites</i> , 2014 , 33, 911-922	2.9	16
5	Thermal degradation mechanism and kinetics of polycarbonate/silica nanocomposites. <i>Polymer Degradation and Stability</i> , 2014 , 107, 129-138	4.7	55
4	High-performance epoxy/silica coated silver nanowire composites as underfill material for electronic packaging. <i>Composites Science and Technology</i> , 2014 , 105, 80-85	8.6	104
3	High-efficiency electromagnetic interference shielding capability of magnetic Ti3C2Tx MXene/CNT composite film. <i>Journal of Materials Chemistry A</i> ,	13	14
2	Self-Assembled VS4 Hierarchitectures with Enhanced Capacity and Stability for Sodium Storage. Energy and Environmental Materials,	13	9

Dual-Redox Sites Guarantee High-Capacity Sodium Storage in Two-Dimension Conjugated Metal Drganic Frameworks. *Advanced Functional Materials*, 2112072

15.6 6