List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5207522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multifunctional Magnetic Ti ₃ C ₂ T _{<i>x</i>} MXene/Graphene Aerogel with Superior Electromagnetic Wave Absorption Performance. ACS Nano, 2021, 15, 6622-6632.	7.3	503
2	Flexible, Robust, and Multifunctional Electromagnetic Interference Shielding Film with Alternating Cellulose Nanofiber and MXene Layers. ACS Applied Materials & Interfaces, 2020, 12, 4895-4905.	4.0	370
3	Promising Ti ₃ C ₂ T <i>_x</i> MXene/Ni Chain Hybrid with Excellent Electromagnetic Wave Absorption and Shielding Capacity. ACS Applied Materials & Interfaces, 2019, 11, 25399-25409.	4.0	337
4	Sodium/Potassiumâ€lon Batteries: Boosting the Rate Capability and Cycle Life by Combining Morphology, Defect and Structure Engineering. Advanced Materials, 2020, 32, e1904320.	11.1	335
5	A Dualâ€Functional Conductive Framework Embedded with TiNâ€VN Heterostructures for Highly Efficient Polysulfide and Lithium Regulation toward Stable Li–S Full Batteries. Advanced Materials, 2020, 32, e1905658.	11.1	276
6	Electronic Structure Regulation of Layered Vanadium Oxide via Interlayer Doping Strategy toward Superior Highâ€Rate and Lowâ€Temperature Zincâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1907684.	7.8	259
7	Three-Dimensional Ordered Macroporous Metal–Organic Framework Single Crystal-Derived Nitrogen-Doped Hierarchical Porous Carbon for High-Performance Potassium-Ion Batteries. Nano Letters, 2019, 19, 4965-4973.	4.5	246
8	Flexible MXene/Silver Nanowire-Based Transparent Conductive Film with Electromagnetic Interference Shielding and Electro-Photo-Thermal Performance. ACS Applied Materials & Interfaces, 2020, 12, 40859-40869.	4.0	231
9	Self‣upported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for Highâ€Energyâ€Density Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1902228.	11.1	216
10	Mechanistic Understanding of Metal Phosphide Host for Sulfur Cathode in High-Energy-Density Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 8986-8996.	7.3	215
11	Sodium-based batteries: from critical materials to battery systems. Journal of Materials Chemistry A, 2019, 7, 9406-9431.	5.2	199
12	Superhydrophobic/Superoleophilic Polycarbonate/Carbon Nanotubes Porous Monolith for Selective Oil Adsorption from Water. ACS Sustainable Chemistry and Engineering, 2018, 6, 13747-13755.	3.2	198
13	Enhanced Electromagnetic Wave-Absorbing Performance of Magnetic Nanoparticles-Anchored 2D Ti ₃ C ₂ T <i>_x</i> MXene. ACS Applied Materials & Interfaces, 2020, 12, 2644-2654.	4.0	194
14	Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene. Journal of Hazardous Materials, 2018, 346, 140-151.	6.5	173
15	Ultralight Layerâ€byâ€Layer Selfâ€Assembled MoS ₂ â€Polymer Modified Separator for Simultaneously Trapping Polysulfides and Suppressing Lithium Dendrites. Advanced Energy Materials, 2018, 8, 1802430.	10.2	170
16	Regulating Lithium Nucleation and Deposition via MOFâ€Đerived Co@Câ€Modified Carbon Cloth for Stable Li Metal Anode. Advanced Functional Materials, 2020, 30, 1909159.	7.8	170
17	Regeneration, degradation, and toxicity effect of MOFs: Opportunities and challenges. Environmental Research, 2019, 176, 108488.	3.7	167
18	Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries. Journal of Membrane Science, 2015, 491, 82-89.	4.1	161

#	Article	IF	CITATIONS
19	Improving thermal and flame retardant properties of epoxy resin by functionalized graphene containing phosphorous, nitrogen and silicon elements. Composites Part A: Applied Science and Manufacturing, 2017, 103, 74-83.	3.8	158
20	A Mixed Lithiumâ€ion Conductive Li ₂ S/Li ₂ Se Protection Layer for Stable Lithium Metal Anode. Advanced Functional Materials, 2020, 30, 2001607.	7.8	158
21	A flexible, self-healing and highly stretchable polymer electrolyte <i>via</i> quadruple hydrogen bonding for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 11725-11733.	5.2	155
22	The Promise and Challenge of Phosphorusâ€Based Composites as Anode Materials for Potassiumâ€lon Batteries. Advanced Materials, 2019, 31, e1901414.	11.1	155
23	Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries. Science Bulletin, 2021, 66, 685-693.	4.3	149
24	Simultaneous improvement in the flame resistance and thermal conductivity of epoxy/Al ₂ O ₃ composites by incorporating polymeric flame retardant-functionalized graphene. Journal of Materials Chemistry A, 2017, 5, 13544-13556.	5.2	148
25	High-performance epoxy/silica coated silver nanowire composites as underfill material for electronic packaging. Composites Science and Technology, 2014, 105, 80-85.	3.8	146
26	Creating MXene/reduced graphene oxide hybrid towards highly fire safe thermoplastic polyurethane nanocomposites. Composites Part B: Engineering, 2020, 203, 108486.	5.9	145
27	Synergetic Improvement in Thermal Conductivity and Flame Retardancy of Epoxy/Silver Nanowires Composites by Incorporating "Branch-Like―Flame-Retardant Functionalized Graphene. ACS Applied Materials & Interfaces, 2018, 10, 21628-21641.	4.0	142
28	An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management. Nanoscale, 2021, 13, 2378-2388.	2.8	141
29	Metal Chalcogenides: Paving the Way for Highâ€Performance Sodium/Potassiumâ€Ion Batteries. Small Methods, 2020, 4, 1900563.	4.6	140
30	Flexible polyvinylidene fluoride film with alternating oriented graphene/Ni nanochains for electromagnetic interference shielding and thermal management. Chemical Engineering Journal, 2020, 395, 125209.	6.6	139
31	Enhanced thermal conductivity and ideal dielectric properties of epoxy composites containing polymer modified hexagonal boron nitride. Composites Part A: Applied Science and Manufacturing, 2018, 107, 657-664.	3.8	133
32	Highly flame-retardant epoxy-based thermal conductive composites with functionalized boron nitride nanosheets exfoliated by one-step ball milling. Chemical Engineering Journal, 2021, 407, 127099.	6.6	131
33	Optimizing the Void Size of Yolk–Shell Bi@Void@C Nanospheres for High-Power-Density Sodium-Ion Batteries. Nano Letters, 2020, 20, 758-767.	4.5	129
34	Recent advances in cathode materials for rechargeable lithium–sulfur batteries. Nanoscale, 2019, 11, 15418-15439.	2.8	125
35	Highly thermally conductive flame retardant epoxy nanocomposites with multifunctional ionic liquid flame retardant-functionalized boron nitride nanosheets. Journal of Materials Chemistry A, 2018, 6, 20500-20512.	5.2	123
36	Superhydrophobic and superoleophilic porous reduced graphene oxide/polycarbonate monoliths for high-efficiency oil/water separation. Journal of Hazardous Materials, 2018, 344, 849-856.	6.5	122

#	Article	lF	CITATIONS
37	Lithium Difluorophosphateâ€Based Dualâ€Salt Low Concentration Electrolytes for Lithium Metal Batteries. Advanced Energy Materials, 2020, 10, 2001440.	10.2	121
38	Multiple synergistic effects of graphene-based hybrid and hexagonal born nitride in enhancing thermal conductivity and flame retardancy of epoxy. Chemical Engineering Journal, 2020, 379, 122402.	6.6	120
39	Cobalt-based electrode materials for sodium-ion batteries. Chemical Engineering Journal, 2019, 370, 185-207.	6.6	118
40	Oxyvanite V ₃ O ₅ : A new intercalationâ€type anode for lithiumâ€ion battery. InformaÄnÃ-Materiály, 2019, 1, 251-259.	8.5	117
41	Multi-functional interface tailoring for enhancing thermal conductivity, flame retardancy and dynamic mechanical property of epoxy/Al2O3 composites. Composites Science and Technology, 2018, 160, 42-49.	3.8	107
42	Stabilization Perspective on Metal Anodes for Aqueous Batteries. Advanced Energy Materials, 2021, 11, 2000962.	10.2	106
43	Poly(ethylene oxide)-based composite polymer electrolytes embedding with ionic bond modified nanoparticles for all-solid-state lithium-ion battery. Journal of Membrane Science, 2019, 575, 200-208.	4.1	102
44	Red Phosphorousâ€Đerived Protective Layers with High Ionic Conductivity and Mechanical Strength on Dendriteâ€Free Sodium and Potassium Metal Anodes. Advanced Energy Materials, 2021, 11, 2003381.	10.2	102
45	Electrolytes Enriched by Crown Ethers for Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2002578.	7.8	101
46	Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding. Journal of Colloid and Interface Science, 2021, 583, 571-578.	5.0	99
47	Flexible and alternant-layered cellulose nanofiber/graphene film with superior thermal conductivity and efficient electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2020, 139, 106134.	3.8	94
48	Fast electrochemical kinetics and strong polysulfide adsorption by a highly oriented MoS ₂ nanosheet@N-doped carbon interlayer for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 7897-7906.	5.2	93
49	Transition metal carbides in electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2021, 32, 291-298.	4.8	91
50	Enhancing thermal oxidation and fire resistance of reduced graphene oxide by phosphorus and nitrogen co-doping: Mechanism and kinetic analysis. Carbon, 2019, 146, 650-659.	5.4	90
51	Flexible Organic–Inorganic Hybrid Solid Electrolytes Formed via Thiol–Acrylate Photopolymerization. Macromolecules, 2017, 50, 1970-1980.	2.2	89
52	Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries. Journal of Materials Chemistry A, 2019, 7, 15774-15781.	5.2	87
53	Necklace-like carbon nanofibers encapsulating V ₃ S ₄ microspheres for ultrafast and stable potassium-ion storage. Journal of Materials Chemistry A, 2020, 8, 2618-2626.	5.2	87
54	A High-Capacity Ammonium Vanadate Cathode for Zinc-Ion Battery. Nano-Micro Letters, 2020, 12, 67.	14.4	85

#	Article	IF	CITATIONS
55	Scalable manufacturing of flexible, durable Ti3C2Tx MXene/Polyvinylidene fluoride film for multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. Composites Part B: Engineering, 2021, 217, 108902.	5.9	85
56	MXene-Coated Wrinkled Fabrics for Stretchable and Multifunctional Electromagnetic Interference Shielding and Electro/Photo-Thermal Conversion Applications. ACS Applied Materials & Interfaces, 2021, 13, 60478-60488.	4.0	81
57	Multilayer polyethylene/ hexagonal boron nitride composites showing high neutron shielding efficiency and thermal conductivity. Composites Communications, 2020, 19, 147-153.	3.3	79
58	Ultrafast Potassium Storage in F-Induced Ultra-High Edge-Defective Carbon Nanosheets. ACS Nano, 2021, 15, 10217-10227.	7.3	79
59	Ultrathin, flexible transparent Joule heater with fast response time based on single-walled carbon nanotubes/poly(vinyl alcohol) film. Composites Science and Technology, 2019, 183, 107796.	3.8	77
60	A Lowâ€Temperature Sodiumâ€Ion Full Battery: Superb Kinetics and Cycling Stability. Advanced Functional Materials, 2021, 31, 2009458.	7.8	77
61	Aramid nanofiber-derived carbon aerogel film with skin-core structure for high electromagnetic interference shielding and solar-thermal conversion. Carbon, 2021, 184, 562-570.	5.4	74
62	Topotactic Transformation Synthesis of 2D Ultrathin GeS ₂ Nanosheets toward High-Rate and High-Energy-Density Sodium-Ion Half/Full Batteries. ACS Nano, 2020, 14, 531-540.	7.3	71
63	Thermal degradation mechanism and kinetics of polycarbonate/silica nanocomposites. Polymer Degradation and Stability, 2014, 107, 129-138.	2.7	68
64	High-efficiency electromagnetic interference shielding capability of magnetic Ti ₃ C ₂ T _{<i>x</i>} MXene/CNT composite film. Journal of Materials Chemistry A, 2021, 9, 24560-24570.	5.2	68
65	Advantageous Functional Integration of Adsorptionâ€Intercalationâ€Conversion Hybrid Mechanisms in 3D Flexible Nb ₂ O ₅ @Hard Carbon@MoS ₂ @Soft Carbon Fiber Paper Anodes for Ultrafast and Superâ€Stable Sodium Storage. Advanced Functional Materials, 2020, 30, 1908665.	7.8	67
66	Unraveling the Intercorrelation Between Micro/Mesopores and K Migration Behavior in Hard Carbon. Small, 2022, 18, e2107113.	5.2	65
67	Phosphorous-Nitrogen flame retardants engineering MXene towards highly fire safe thermoplastic polyurethane. Composites Communications, 2022, 29, 101055.	3.3	65
68	Flexible Transparent Polypyrrole-Decorated MXene-Based Film with Excellent Photothermal Energy Conversion Performance. ACS Applied Materials & amp; Interfaces, 2021, 13, 8909-8918.	4.0	64
69	Understanding the effect of interfacial engineering on interfacial thermal resistance in nacre-like cellulose nanofiber/graphene film. Composites Science and Technology, 2020, 197, 108229.	3.8	63
70	Superhydrophobic and superelastic thermoplastic polyurethane/multiwalled carbon nanotubes porous monolith for durable oil/water separation. Composites Communications, 2020, 21, 100378.	3.3	62
71	Highly thermally conductive polyvinyl alcohol/boron nitride nanocomposites with interconnection oriented boron nitride nanoplatelets. Composites Science and Technology, 2021, 201, 108521.	3.8	62
72	SiO ₂ @MoS ₂ core–shell nanocomposite layers with high lithium ion diffusion as a triple polysulfide shield for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 7644-7653.	5.2	60

#	Article	IF	CITATIONS
73	Boosting the potassium storage performance of carbon anode via integration of adsorption-intercalation hybrid mechanisms. Nano Energy, 2020, 73, 104807.	8.2	60
74	Highly efficient MXene/Nano-Cu smoke suppressant towards reducing fire hazards of thermoplastic polyurethane. Composites Part A: Applied Science and Manufacturing, 2021, 150, 106600.	3.8	60
75	2021 Roadmap: electrocatalysts for green catalytic processes. JPhys Materials, 2021, 4, 022004.	1.8	57
76	A double crosslinking MXene/cellulose nanofiber layered film for improving mechanical properties and stable electromagnetic interference shielding performance. Journal of Materials Science and Technology, 2022, 129, 127-134.	5.6	57
77	Controlling the morphology, size and phase of Nb2O5 crystals for high electrochemical performance. Chinese Chemical Letters, 2018, 29, 1785-1790.	4.8	56
78	Fe, V-co-doped C2N for electrocatalytic N2-to-NH3 conversion. Journal of Energy Chemistry, 2021, 53, 303-308.	7.1	55
79	Sandwiched cellulose nanofiber /boron nitride nanosheet /Ti3C2Tx MXene composite film with high electromagnetic shielding and thermal conductivity yet insulation performance. Composites Science and Technology, 2021, 214, 108974.	3.8	55
80	Carbonâ€based materials for allâ€solidâ€state zinc–air batteries. , 2021, 3, 50-65.		54
81	Flexible hydrophobic 2D Ti3C2Tx-based transparent conductive film with multifunctional self-cleaning, electromagnetic interference shielding and joule heating capacities. Composites Science and Technology, 2021, 201, 108531.	3.8	54
82	Research progress on hybrid organic–inorganic perovskites for photo-applications. Chinese Chemical Letters, 2020, 31, 3055-3064.	4.8	52
83	Gas sensing materials roadmap. Journal of Physics Condensed Matter, 2021, 33, 303001.	0.7	49
84	Flexible, thermostable and flame-resistant epoxy-based thermally conductive layered films with aligned ionic liquid-wrapped boron nitride nanosheets via cyclic layer-by-layer blade-casting. Chemical Engineering Journal, 2022, 437, 135482.	6.6	47
85	Carbon welding on graphene skeleton for phase change composites with high thermal conductivity for solar-to-heat conversion. Chemical Engineering Journal, 2022, 427, 131665.	6.6	46
86	Fire/heat-resistant, anti-corrosion and folding Ti ₂ C ₃ T _{<i>x</i>} MXene/single-walled carbon nanotube films for extreme-environmental EMI shielding and solar-thermal conversion applications. Journal of Materials Chemistry C, 2021, 9, 10425-10434.	2.7	45
87	<i>In situ</i> construction of active interfaces towards improved high-rate performance of CoSe ₂ . Journal of Materials Chemistry A, 2021, 9, 14582-14592.	5.2	44
88	Selfâ€Formed Electronic/Ionic Conductive Fe ₃ S ₄ @ S @ 0.9Na ₃ SbS ₄ â<0.1NaI Composita Highâ€Performance Roomâ€Temperature Allâ€Solidâ€State Sodium–Sulfur Battery. Small, 2020, 16, e2001574	e faoe 1.	43
89	Ultralow-Carbon Nanotube-Toughened Epoxy: The Critical Role of a Double-Layer Interface. ACS Applied Materials & Interfaces, 2018, 10, 1204-1216.	4.0	42
90	Magnetic, superelastic and superhydrophobic porous thermoplastic polyurethane monolith with nano-Fe3O4 coating for highly selective and easy-recycling oil/water separation. Applied Surface Science, 2021, 535, 147690.	3.1	42

#	Article	IF	CITATIONS
91	Architectural Engineering Achieves Highâ€Performance Alloying Anodes for Lithium and Sodium Ion Batteries. Small, 2021, 17, e2005248.	5.2	42
92	Edge-enrich N-doped graphitic carbon: Boosting rate capability and cyclability for potassium ion battery. Chemical Engineering Journal, 2022, 432, 134321.	6.6	42
93	The Synergetic Effect of Lithium Bisoxalatodifluorophosphate and Fluoroethylene Carbonate on Dendrite Suppression for Fast Charging Lithium Metal Batteries. Small, 2020, 16, e2001989.	5.2	41
94	Zinc/Nickelâ€Doped Hollow Core–Shell Co ₃ O ₄ Derived from a Metal–Organic Framework with High Capacity, Stability, and Rate Performance in Lithium/Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 1651-1656.	1.7	40
95	Superelastic and Durable Hierarchical Porous Thermoplastic Polyurethane Monolith with Excellent Hydrophobicity for Highly Efficient Oil/Water Separation. Industrial & Engineering Chemistry Research, 2019, 58, 20291-20299.	1.8	40
96	Electrospun Sb2Se3@C nanofibers with excellent lithium storage properties. Chinese Chemical Letters, 2020, 31, 909-914.	4.8	40
97	Co-doped graphene edge for enhanced N2-to-NH3 conversion. Journal of Energy Chemistry, 2020, 48, 322-327.	7.1	40
98	Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries. Matter, 2021, 4, 1768-1800.	5.0	39
99	RuO ₂ Particles Anchored on Brush‣ike 3D Carbon Cloth Guide Homogenous Li/Na Nucleation Framework for Stable Li/Na Anode. Small, 2019, 15, e1903725.	5.2	38
100	A Highâ€Temperature Naâ€Ion Battery: Boosting the Rate Capability and Cycle Life by Structure Engineering. Small, 2020, 16, e1906669.	5.2	37
101	Layer-by-layer self-assembled covalent triazine framework/electrical conductive polymer functional separator for Li-S battery. Chemical Engineering Journal, 2021, 404, 127044.	6.6	36
102	Roadmap on Ionic Liquid Electrolytes for Energy Storage Devices. Chemistry - an Asian Journal, 2021, 16, 549-562.	1.7	36
103	Cellulose acetate monolith with hierarchical micro/nano-porous structure showing superior hydrophobicity for oil/water separation. Carbohydrate Polymers, 2020, 241, 116361.	5.1	35
104	Mesoporous carbon nanosheet-assembled flowers towards superior potassium storage. Chinese Chemical Letters, 2021, 32, 1161-1164.	4.8	35
105	Hydrophobic polycarbonate monolith with mesoporous nest-like structure: an effective oil sorbent. Materials Letters, 2017, 188, 201-204.	1.3	34
106	Highly thermally conductive yet mechanically robust composites with nacre-mimetic structure prepared by evaporation-induced self-assembly approach. Chemical Engineering Journal, 2021, 405, 126865.	6.6	34
107	Superhydrophobic cellulose acetate/multiwalled carbon nanotube monolith with fiber cluster network for selective oil/water separation. Carbohydrate Polymers, 2021, 259, 117750.	5.1	33
108	Iron selenide nanoparticles-encapsulated within bamboo-like N-doped carbon nanotubes as composite anodes for superior lithium and sodium-ion storage. Chemical Engineering Journal, 2022, 435, 135185.	6.6	33

#	Article	IF	CITATIONS
109	Scalable Approach to Construct Self-Assembled Graphene-Based Films with An Ordered Structure for Thermal Management. ACS Applied Materials & Interfaces, 2018, 10, 41690-41698.	4.0	32
110	Metal–organic framework derived amorphous VO _x coated Fe ₃ O ₄ /C hierarchical nanospindle as anode material for superior lithium-ion batteries. Nanoscale, 2020, 12, 16901-16909.	2.8	31
111	Dualâ€Redox Sites Guarantee Highâ€Capacity Sodium Storage in Twoâ€Dimension Conjugated Metal–Organic Frameworks. Advanced Functional Materials, 2022, 32, .	7.8	31
112	UV-curable boron nitride nanosheet/ionic liquid-based crosslinked composite polymer electrolyte in lithium metal batteries. Journal of Power Sources, 2019, 414, 283-292.	4.0	30
113	Effects of selective distribution of alumina micro-particles on rheological, mechanical and thermal conductive properties of asphalt/SBS/alumina composites. Composites Science and Technology, 2020, 186, 107917.	3.8	30
114	Selfâ€Assembled VS ₄ Hierarchitectures with Enhanced Capacity and Stability for Sodium Storage. Energy and Environmental Materials, 2022, 5, 592-598.	7.3	30
115	Well-structured holographic polymer dispersed liquid crystals by employing acrylamide and doping ZnS nanoparticles. Materials Chemistry Frontiers, 2017, 1, 294-303.	3.2	28
116	Mesoporous silica nanoplates facilitating fast Li ⁺ diffusion as effective polysulfide-trapping materials for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 9110-9119.	5.2	27
117	Gallium-based anodes for alkali metal ion batteries. Journal of Energy Chemistry, 2021, 55, 557-571.	7.1	27
118	A promising nanohybrid of silicon carbide nanowires scrolled by graphene oxide sheets with a synergistic effect for poly(propylene carbonate) nanocomposites. Journal of Materials Chemistry A, 2017, 5, 22361-22371.	5.2	25
119	Postâ€Lithiumâ€Ion Battery Era: Recent Advances in Rechargeable Potassiumâ€Ion Batteries. Chemistry - A European Journal, 2021, 27, 512-536.	1.7	25
120	Flexible and robust porous thermoplastic polyurethane/reduced graphene oxide monolith with special wettability for continuous oil/water separation in harsh environment. Separation and Purification Technology, 2021, 266, 118553.	3.9	25
121	A Novel Protective Strategy on Highâ€Voltage LiCoO ₂ Cathode for Fast Charging Applications: Li _{1.6} Mg _{1.6} Sn _{2.8} O ₈ Double Layer Structure via SnO ₂ Surface Modification. Small Methods, 2019, 3, 1900355.	4.6	22
122	Advances in K-Q (Q = S, Se and Se S) batteries. Materials Today, 2020, 39, 9-22.	8.3	21
123	High-performance and robust dual-function electrochromic device for dynamic thermal regulation and electromagnetic interference shielding. Chemical Engineering Journal, 2021, 422, 130064.	6.6	21
124	Robust composite film with high thermal conductivity and excellent mechanical properties by constructing a long-range ordered sandwich structure. Journal of Materials Chemistry A, 2022, 10, 9922-9931.	5.2	20
125	Promoted CO2 electroreduction over indium-doped SnP3: A computational study. Journal of Energy Chemistry, 2020, 48, 1-6.	7.1	19
126	2-(Trifluoroacetyl) thiophene as an electrolyte additive for high-voltage lithium-ion batteries using LiCoO2 cathode. Journal of Materials Science and Technology, 2020, 55, 198-202.	5.6	19

#	Article	IF	CITATIONS
127	Fine-tuning the electromagnetic parameters of 2D conjugated metal-organic framework semiconductors for anti-electromagnetic interference in the Ku band. Chemical Engineering Journal, 2022, 444, 136574.	6.6	19
128	CTF/MWCNT hybrid multi-functional separator as high-efficiency polysulfide tamer for high-performance Li–S battery. Electrochimica Acta, 2021, 367, 137418.	2.6	18
129	Woodâ€Derived, Vertically Aligned, and Densely Interconnected 3D SiC Frameworks for Anisotropically Highly Thermoconductive Polymer Composites. Advanced Science, 2022, 9, e2103592.	5.6	18
130	Effects of modified silica on morphology, mechanical property, and thermostability of injection-molded polycarbonate/silica nanocomposites. Journal of Reinforced Plastics and Composites, 2014, 33, 911-922.	1.6	16
131	A facile strategy for functionalizing silica nanoparticles by polycarbonate degradation and its application in polymer nanocomposites. Polymer Degradation and Stability, 2015, 119, 295-298.	2.7	16
132	Boosting Sodium Storage in TiF ₃ /Carbon Core/Sheath Nanofibers through an Efficient Mixed onducting Network. Advanced Energy Materials, 2019, 9, 1901470.	10.2	16
133	Bio-inspired stem-like composites based on highly aligned SiC nanowires. Chemical Engineering Journal, 2020, 389, 123466.	6.6	16
134	S-Doped Carbon-Coated FeS2/C@C Nanorods for Potassium Storage. Acta Metallurgica Sinica (English) Tj ETQq	0 0 0 rgBT 1.5	/Oyerlock 10
135	Noncovalent immobilization of pyrene-terminated hyperbranched triazole-based polymeric ionic liquid onto graphene for highly active and recyclable catalysis of CO ₂ /epoxide cycloaddition. Catalysis Science and Technology, 2017, 7, 4173-4181.	2.1	15
136	Dependence of electromagnetic wave absorption properties on the topography of Ni anchoring on reduced graphene oxide. Chinese Chemical Letters, 2021, 32, 870-874.	4.8	15
137	Superior potassium and zinc storage in K-doped VO ₂ (B) spheres. Materials Chemistry Frontiers, 2021, 5, 3132-3138.	3.2	14
138	Twoâ€Dimensional Germanium Sulfide Nanosheets as an Ultraâ€Stable and High Capacity Anode for Lithium Ion Batteries. Chemistry - A European Journal, 2020, 26, 6554-6560.	1.7	13
139	Fabrication of hierarchically porous superhydrophilic polycaprolactone monolith based on nonsolvent-thermally induced phase separation. RSC Advances, 2020, 10, 26319-26325.	1.7	13
140	In-situ shear exfoliation and thermal conductivity of SBS/Graphite nanoplatelet nanocomposites. Composites Part B: Engineering, 2020, 197, 108172.	5.9	12
141	Vanadate-based electrodes for rechargeable batteries. Materials Chemistry Frontiers, 2021, 5, 1585-1609.	3.2	12
142	Fe2P nanoparticles-doped carbon nanofibers with enhanced electrons transfer capability as a self-supporting anode for potassium-ion battery. Electrochimica Acta, 2022, 404, 139759.	2.6	12
143	Low-voltage-driven and highly-diffractive holographic polymer dispersed liquid crystals with spherical morphology. RSC Advances, 2017, 7, 51847-51857.	1.7	11
144	Nacre-inspired Polymer Nanocomposites with High-performance and Multifunctional Properties Realized by a Facile Evaporation-induced Self-assembly Approach. ACS Sustainable Chemistry and Engineering, 2019, 7, 19787-19798.	3.2	11

#	Article	IF	CITATIONS
145	Ion-selective aramid nanofiber-based Janus separators fabricated by a dry-wet phase inversion approach for lithium–sulfur batteries. Journal of Materials Chemistry A, 2022, 10, 5317-5327.	5.2	11
146	Electrically and thermally conductive Al2O3/C nanofiber membrane filled with organosilicon as a multifunctional integrated interlayer for lithium-sulfur batteries under lean-electrolyte and thermal gradient. Chemical Engineering Journal, 2022, 442, 135825.	6.6	11
147	Thermal Degradation Behavior and Kinetics of 3D Porous Polycarbonate Monoliths. Macromolecular Materials and Engineering, 2019, 304, 1800667.	1.7	10
148	Induced assembly of polystyrene composites for simultaneously improving flame retardant and electromagnetic shielding properties. Polymers for Advanced Technologies, 2021, 32, 4251-4262.	1.6	9
149	Recent progress in electrochemical performance of carbon-based anodes for potassium-ion batteries based on first principles calculations. Nanotechnology, 2021, 32, 472003.	1.3	9
150	Constructing a three-dimensional nano-crystalline diamond network within polymer composites for enhanced thermal conductivity. Nanoscale, 2021, 13, 18657-18664.	2.8	9
151	Interfacial Kinetics Regulation of MoS ₂ /Cu ₂ Se Nanosheets toward Superior Highâ€Rate and Ultralongâ€Lifespan Sodiumâ€Ion Half/Full Batteries. ChemSusChem, 2021, 14, 5304-5310.	3.6	9
152	A sodiophilic VN interlayer stabilizing a Na metal anode. Nanoscale Horizons, 2022, 7, 899-907.	4.1	9
153	Lithium–Sulfur Batteries: Selfâ€Supported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for Highâ€Energyâ€Density Lithium–Sulfur Batteries (Adv. Mater. 33/2019). Advanced Materials, 2019, 31, 1970236.	11.1	8
154	VOPO4â‹2H2O Nanosheet Cathode for Enhanced Sodium Storage. Frontiers in Energy Research, 2020, 8, .	1.2	8
155	Heteroatom-doped carbon anode materials for potassium-ion batteries: From mechanism, synthesis to electrochemical performance. APL Materials, 2022, 10, .	2.2	8
156	Simultaneously reinforcing and toughening poly(lactic acid) by incorporating reactive meltâ€functionalized silica nanoparticles. Journal of Applied Polymer Science, 2020, 137, 48834.	1.3	7
157	Black phosphorene-cellulose nanofiber hybrid paper as flexible heat spreader. 2D Materials, 2021, 8, 045029.	2.0	5
158	Efficient thermal management of lithium-sulfur batteries by highly thermally conductive LBL-assembled composite separators. Electrochimica Acta, 2022, 407, 139807.	2.6	5
159	Functionalizing MXenes with molybdenum trioxide towards reducing fire hazards of thermoplastic polyurethane. New Journal of Chemistry, 2022, 46, 14112-14121.	1.4	5
160	Enhanced interfacial and mechanical property of biodegradable poly(butylene succinate) film via introducing ultrahigh molecular weight polyethylene shish-kebab fibers. Materials Research Express, 2019, 6, 125374.	0.8	3
161	Fast and Reversible Na Intercalation in Nsutiteâ€√ype VO 2 Hierarchitectures. Advanced Materials Interfaces, 2021, 8, 2100191.	1.9	2
162	MoS ₂ Decorated Silver Nanowireâ€Reduced Graphene Oxide Aerogel Microâ€Particle for Thermally Conductive Polymer Composites with Enhanced Flame Retardancy. Macromolecular Rapid Communications, 2022, 43, e2200026.	2.0	2

#	Article	IF	CITATIONS
163	Potassiumâ€ion Batteries: The Promise and Challenge of Phosphorusâ€Based Composites as Anode Materials for Potassiumâ€ion Batteries (Adv. Mater. 50/2019). Advanced Materials, 2019, 31, 1970354.	11.1	1
164	Metal Chalcogenides: Metal Chalcogenides: Paving the Way for Highâ€Performance Sodium/Potassiumâ€Ion Batteries (Small Methods 1/2020). Small Methods, 2020, 4, 2070002.	4.6	1
165	NASICON Electrodes: A Lowâ€Temperature Sodiumâ€lon Full Battery: Superb Kinetics and Cycling Stability (Adv. Funct. Mater. 11/2021). Advanced Functional Materials, 2021, 31, 2170070.	7.8	1
166	Removal of Metal Ions in Phosphoric Acid by Electro-Electrodialysis with Cross-Linked Anion-Exchange Membranes. ACS Omega, 2021, 6, 32417-32430.	1.6	1