Christoffel Petrus Stephanus Badenhors

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5207462/publications.pdf

Version: 2024-02-01

CHRISTOFFEL PETRUS

#	Article	IF	CITATIONS
1	Engineering and evaluation of thermostable <i>ls</i> PETase variants for PET degradation. Engineering in Life Sciences, 2022, 22, 192-203.	3.6	51
2	Mechanism-Based Design of Efficient PET Hydrolases. ACS Catalysis, 2022, 12, 3382-3396.	11.2	104
3	Enzyme Kits to Facilitate the Integration of Biocatalysis into Organic Chemistry – First Aid for Synthetic Chemists. ChemCatChem, 2022, 14, .	3.7	6
4	Entdeckung und Design promiskuitiver Acyltransferaseâ€Aktivitäin Carboxylesterasen der Familie VIII. Angewandte Chemie, 2021, 133, 2041-2045.	2.0	0
5	Discovery and Design of Familyâ€VIII Carboxylesterases as Highly Efficient Acyltransferases. Angewandte Chemie - International Edition, 2021, 60, 2013-2017.	13.8	25
6	Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7βâ€Hydroxylation of Lithocholic Acid. Angewandte Chemie - International Edition, 2021, 60, 753-757.	13.8	47
7	Die gerichtete Evolution einer Halogenidâ€Methyltransferase erlaubt die biokatalytische Synthese diverser SAMâ€Analoga. Angewandte Chemie, 2021, 133, 1547-1551.	2.0	16
8	Directed Evolution of a Halide Methyltransferase Enables Biocatalytic Synthesis of Diverse SAM Analogs. Angewandte Chemie - International Edition, 2021, 60, 1524-1527.	13.8	54
9	Fluorimetric high-throughput screening method for polyester hydrolase activity using polyethylene terephthalate nanoparticles. Methods in Enzymology, 2021, 648, 253-270.	1.0	18
10	Recent trends in biocatalysis. Chemical Society Reviews, 2021, 50, 8003-8049.	38.1	175
11	Efficient Acylation of Sugars and Oligosaccharides in Aqueous Environment Using Engineered Acyltransferases. ACS Catalysis, 2021, 11, 2831-2836.	11.2	12
12	From Natural Methylation to Versatile Alkylations Using Halide Methyltransferases. ChemBioChem, 2021, 22, 2584-2590.	2.6	15
13	Promiscuous Dehalogenase Activity of the Epoxide Hydrolase CorEH from <i>Corynebacterium</i> sp. C12. ACS Catalysis, 2021, 11, 6113-6120.	11.2	5
14	Recent Insights and Future Perspectives on Promiscuous Hydrolases/Acyltransferases. ACS Catalysis, 2021, 11, 14906-14915.	11.2	19
15	An Ultrasensitive Fluorescence Assay for the Detection of Halides and Enzymatic Dehalogenation. ChemCatChem, 2020, 12, 2032-2039.	3.7	9
16	Protein Engineering for Enhanced Acyltransferase Activity, Substrate Scope, and Selectivity of the <i>Mycobacterium smegmatis</i> Acyltransferase MsAcT. ACS Catalysis, 2020, 10, 7552-7562.	11.2	35
17	Sequenceâ€Based Prediction of Promiscuous Acyltransferase Activity in Hydrolases. Angewandte Chemie, 2020, 132, 11704-11709.	2.0	13
18	Sequenceâ€Based Prediction of Promiscuous Acyltransferase Activity in Hydrolases. Angewandte Chemie - International Edition, 2020, 59, 11607-11612.	13.8	40

CHRISTOFFEL PETRUS

#	Article	IF	CITATIONS
19	The diverse origins of circulating cellâ€free DNA in the human body: a critical reâ€evaluation of the literature. Biological Reviews, 2018, 93, 1649-1683.	10.4	202
20	Getting Momentum: From Biocatalysis to Advanced Synthetic Biology. Trends in Biochemical Sciences, 2018, 43, 180-198.	7.5	70
21	A historical and evolutionary perspective on the biological significance of circulating DNA and extracellular vesicles. Cellular and Molecular Life Sciences, 2016, 73, 4355-4381.	5.4	36
22	Conservation of the coding regions of the glycine N-acyltransferase gene further suggests that glycine conjugation is an essential detoxification pathway. Gene, 2015, 571, 126-134.	2.2	20
23	A new perspective on the importance of glycine conjugation in the metabolism of aromatic acids. Drug Metabolism Reviews, 2014, 46, 343-361.	3.6	60
24	Characterisation of the influence of genetic variations on the enzyme activity of a recombinant human glycine N-acyltransferase. Gene, 2013, 515, 447-453.	2.2	20
25	Glycine conjugation: importance in metabolism, the role of glycine <i>N</i> -acyltransferase, and factors that influence interindividual variation. Expert Opinion on Drug Metabolism and Toxicology, 2013, 9, 1139-1153.	3.3	56
26	Enzymatic Characterization and Elucidation of the Catalytic Mechanism of a Recombinant Bovine Glycine <i>N</i> -Acyltransferase. Drug Metabolism and Disposition, 2012, 40, 346-352.	3.3	16