Clorinda Arias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5206936/publications.pdf

Version: 2024-02-01

all docs

63 2,116 28 44 g-index

63 63 63 63 3261

times ranked

citing authors

docs citations

#	Article	IF	CITATIONS
1	Short-Term High-Fat-and-Fructose Feeding Produces Insulin Signaling Alterations Accompanied by Neurite and Synaptic Reduction and Astroglial Activation in the Rat Hippocampus. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1001-1008.	4.3	119
2	Optical imaging of intrinsic signals: recent developments in the methodology and its applications. Journal of Neuroscience Methods, 2004, 136, 1-21.	2.5	114
3	Okadaic Acid Induces Early Changes in Microtubuleâ€Associated Protein 2 and ⟨i⟩γ⟨/i⟩ Phosphorylation Prior to Neurodegeneration in Cultured Cortical Neurons. Journal of Neurochemistry, 1993, 61, 673-682.	3.9	107
4	Long-term exposure to environmental enrichment since youth prevents recognition memory decline and increases synaptic plasticity markers in aging. Neurobiology of Learning and Memory, 2008, 90, 511-518.	1.9	107
5	PI3K Signaling in Neurons: A Central Node for the Control of Multiple Functions. International Journal of Molecular Sciences, 2018, 19, 3725.	4.1	104
6	When astrocytes become harmful: Functional and inflammatory responses that contribute to Alzheimer's disease. Ageing Research Reviews, 2014, 18, 29-40.	10.9	91
7	\hat{l}^2 -Amyloid peptide induces ultrastructural changes in synaptosomes and potentiates mitochondrial dysfunction in the presence of ryanodine. Journal of Neuroscience Research, 2002, 68, 89-96.	2.9	90
8	Oxidative stress promotes JNK-dependent amyloidogenic processing of normally expressed human APP by differential modification of \hat{l}_{\pm} -, \hat{l}^{2} - and \hat{l}^{3} -secretase expression. Neurochemistry International, 2009, 55, 662-670.	3.8	82
9	Cellular and metabolic alterations in the hippocampus caused by insulin signalling dysfunction and its association with cognitive impairment during aging and Alzheimer's disease: studies in animal models. Diabetes/Metabolism Research and Reviews, 2015, 31, 1-13.	4.0	61
10	Inhibition of Wnt and PI3K Signaling Modulates GSK- $3\hat{l}^2$ Activity and Induces Morphological Changes in Cortical Neurons: Role of Tau Phosphorylation. Neurochemical Research, 2008, 33, 1599-1609.	3.3	55
11	Selective Stimulation of Neurotransmitter Release from Chick Retina by Kainic and Glutamic Acids. Journal of Neurochemistry, 1982, 39, 1169-1178.	3.9	54
12	Sex and estrous cycle-dependent differences in glial fibrillary acidic protein immunoreactivity in the adult rat hippocampus. Hormones and Behavior, 2009, 55, 257-263.	2.1	51
13	The emerging role of Wnt signaling dysregulation in the understanding and modification of age-associated diseases. Ageing Research Reviews, 2017, 37, 135-145.	10.9	51
14	Functional Reorganization of Visual Cortex Maps after Ischemic Lesions Is Accompanied by Changes in Expression of Cytoskeletal Proteins and NMDA and GABAA Receptor Subunits. Journal of Neuroscience, 2004, 24, 1812-1821.	3.6	47
15	Binding of Lanthanum lons and Ruthenium Red to Synaptosomes and Its Effects on Neurotransmitter Release. Journal of Neurochemistry, 1985, 45, 1464-1470.	3.9	43
16	Estradiol and progesterone modify microtubule associated protein 2 content in the rat hippocampus. Brain Research Bulletin, 2002, 58, 607-612.	3.0	42
17	Stimulation of [3H]?-Aminobutyric Acid Release by Calcium Chelators in Synaptosomes. Journal of Neurochemistry, 1984, 42, 1507-1514.	3.9	41
18	Cholesterol Potentiates \hat{I}^2 -Amyloid-Induced Toxicity in Human Neuroblastoma Cells: Involvement of Oxidative Stress. Neurochemical Research, 2008, 33, 1509-1517.	3.3	41

#	Article	IF	CITATIONS
19	Age-Dependent Increment of Hydroxymethylation in the Brain Cortex in the Triple-Transgenic Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 41, 845-854.	2.6	41
20	Neurotoxic and synaptic effects of okadaic acid, an inhibitor of protein phosphatases. Neurochemical Research, 1999, 24, 1423-1430.	3.3	39
21	Exposure to environmental enrichment elicits differential hippocampal cell proliferation: Role of individual responsiveness to anxiety. Developmental Neurobiology, 2007, 67, 395-405.	3.0	39
22	Neuronal damage and MAP2 changes induced by the glutamate transport inhibitor dihydrokainate and by kainate in rat hippocampus in vivo. Experimental Brain Research, 1997, 116, 467-476.	1.5	38
23	Amyloid-Î ² Protein Modulates Insulin Signaling in Presynaptic Terminals. Neurochemical Research, 2012, 37, 1879-1885.	3.3	38
24	Sequential expression of cell-cycle regulators and Alzheimer's disease–related proteins in entorhinal cortex after hippocampal excitotoxic damage. Journal of Neuroscience Research, 2007, 85, 1744-1751.	2.9	32
25	Palmitic acid stimulates energy metabolism and inhibits insulin/PI3K/AKT signaling in differentiated human neuroblastoma cells: The role of mTOR activation and mitochondrial ROS production. Neurochemistry International, 2017, 110, 75-83.	3.8	32
26	æ^熟神ç»åf的细èfžå"æœŸå†æ´»åŒ−与å\$è"'å•塑性〕神ç»åfæŸä¼#'Œç¥žç»é€€è¡Œæ€§ç−¾ç—	çš 2å9. .3ç³	». N∉uroscier
27	Reorganization of Visual Cortical Maps after Focal Ischemic Lesions. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 811-820.	4.3	30
28	Cholesterolâ€induced astrocyte activation is associated with increased amyloid precursor protein expression and processing. Glia, 2015, 63, 2010-2022.	4.9	30
29	Differential Calcium Dependence of γâ€Aminobutyric Acid and Acetylcholine Release in Mouse Brain Synaptosomes. Journal of Neurochemistry, 1986, 47, 396-404.	3.9	29
30	Caspase-12 Activation is Involved in Amyloid-Î ² Protein-Induced Synaptic Toxicity. Journal of Alzheimer's Disease, 2011, 26, 467-476.	2.6	29
31	Transmitter release in hippocampal slices from rats with limbic seizures produced by systemic administration of kainic acid. Neurochemical Research, 1990, 15, 641-645.	3.3	26
32	Inhibition of Brain Glutamate Decarboxylase Activity Is Related to Febrile Seizures in Rat Pups. Journal of Neurochemistry, 1992, 58, 369-373.	3.9	26
33	Role of Wnt Signaling in the Control of Adult Hippocampal Functioning in Health and Disease: Therapeutic Implications. Current Neuropharmacology, 2013, 11, 465-476.	2.9	26
34	Selective distribution and dynamic modulation of miRNAs in the synapse and its possible role in Alzheimer's Disease. Brain Research, 2014, 1584, 80-93.	2.2	24
35	Synaptic Aging is Associated with Mitochondrial Dysfunction, Reduced Antioxidant Contents and Increased Vulnerability to Amyloid-β Toxicity. Current Alzheimer Research, 2013, 10, 324-331.	1.4	24
36	The Phosphatidylinositol 3-Kinase/mTor Pathway as a Therapeutic Target for Brain Aging and Neurodegeneration. Pharmaceuticals, 2011, 4, 1070-1087.	3.8	20

#	Article	IF	Citations
37	Identification of age- and disease-related alterations in circulating miRNAs in a mouse model of Alzheimer's disease. Frontiers in Cellular Neuroscience, 2015, 9, 53.	3.7	18
38	Age-Dependent Decline in Synaptic Mitochondrial Function Is Exacerbated in Vulnerable Brain Regions of Female 3xTg-AD Mice. International Journal of Molecular Sciences, 2020, 21, 8727.	4.1	18
39	The therapeutic potential of mitochondrial transplantation for the treatment of neurodegenerative disorders. Reviews in the Neurosciences, 2021, 32, 203-217.	2.9	18
40	Susceptibility to GSK3β-Induced Tau Phosphorylation Differs Between the Young and Aged Hippocampus after Wnt Signaling Inhibition. Journal of Alzheimer's Disease, 2014, 39, 775-785.	2.6	17
41	Interplay Between Cholesterol and Homocysteine in the Exacerbation of Amyloid-β Toxicity in Human Neuroblastoma Cells. CNS and Neurological Disorders - Drug Targets, 2013, 12, 842-848.	1.4	17
42	Changes in the content and distribution of microtubule associated protein 2 in the hippocampus of the rat during the estrous cycle. Journal of Neurobiology, 2004, 60, 473-480.	3.6	15
43	Lovastatin Differentially Affects Neuronal Cholesterol and Amyloidâ€∢i>β Production <i>inÂvivo</i> and <i>inÂvitro</i> . CNS Neuroscience and Therapeutics, 2015, 21, 631-641.	3.9	15
44	Chronic infusion of Wnt7a, Wnt5a and Dkk-1 in the adult hippocampus induces structural synaptic changes and modifies anxiety and memory performance. Brain Research Bulletin, 2018, 139, 243-255.	3.0	15
45	Palmitic Acid-Induced NAD+ Depletion is Associated with the Reduced Function of SIRT1 and Increased Expression of BACE1 in Hippocampal Neurons. Neurochemical Research, 2019, 44, 1745-1754.	3.3	15
46	Palmitic acid induces insulin resistance by a mechanism associated with energy metabolism and calcium entry in neuronal cells. FASEB Journal, 2021, 35, e21712.	0.5	15
47	The complex actions of statins in brain and their relevance for Alzheimer's disease treatment: an analytical review. Current Alzheimer Research, 2014, 11, 817-33.	1.4	13
48	Functional recovery of the dentate gyrus after a focal lesion is accompanied by structural reorganization in the adult rat. Brain Structure and Function, 2013, 218, 437-453.	2.3	12
49	Evaluating the functional state of adult-born neurons in the adult dentate gyrus of the hippocampus: from birth to functional integration. Reviews in the Neurosciences, 2015, 26, 269-79.	2.9	12
50	Differential Changes in the Number and Morphology of the New Neurons after Chronic Infusion of Wnt7a, Wnt5a, and Dkkâ€1 in the Adult Hippocampus In Vivo. Anatomical Record, 2019, 302, 1647-1657.	1.4	12
51	Histopathologic changes induced by the microtubule-stabilizing agent Taxol in the rat hippocampus in vivo. Journal of Neuroscience Research, 2004, 78, 553-562.	2.9	9
52	ERK activation and expression of neuronal cell cycle markers in the hippocampus after entorhinal cortex lesion. Journal of Neuroscience Research, 2012, 90, 2116-2126.	2.9	9
53	Nonsteroidal anti-inflammatory drugs attenuate amyloid- \hat{l}^2 protein-induced actin cytoskeletal reorganization through Rho signaling modulation. Cellular and Molecular Neurobiology, 2017, 37, 1311-1318.	3.3	9
54	Role of NF-κB in cytochrome P450 epoxygenases down-regulation during an inflammatory process in astrocytes. Neurochemistry International, 2019, 129, 104499.	3.8	8

#	Article	IF	CITATIONS
55	Age-dependent changes in Wnt signaling components and synapse number are differentially affected between brain regions. Experimental Gerontology, 2022, 165, 111854.	2.8	4
56	Extracellular matrix glycoproteins inhibit neurite production by cultured neurons. Journal of Comparative Neurology, 2002, 443, 401-411.	1.6	3
57	Transcriptional Profiles Reveal Deregulation of Lipid Metabolism and Inflammatory Pathways in Neurons Exposed to Palmitic Acid. Molecular Neurobiology, 2021, 58, 4639-4651.	4.0	3
58	RNA Imaging. Methods in Cell Biology, 2013, 113, 361-389.	1.1	2
59	An Update on the Molecular Pillars of Aging. , 2020, , 1-25.		2
60	Differential Regulation of Wnt Signaling Components During Hippocampal Reorganization After Entorhinal Cortex Lesion. Cellular and Molecular Neurobiology, 2021, 41, 537-549.	3.3	1
61	Food for Thought: What Happens to the Brain When We Eat Foods High in Fat and Sugar?. Frontiers for Young Minds, 2019, 7, .	0.8	O
62	Do new neurons contribute to functional reorganization after brain damage?. Neural Regeneration Research, 2018, 13, 2083.	3.0	0
63	Ricardo Tapia (1940 – 2021). Journal of Neurochemistry, 2021, , .	3.9	O