Wen-Ming Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5206121/publications.pdf

Version: 2024-02-01

185998 301761 6,117 40 28 citations h-index papers

g-index 40 40 40 5782 docs citations times ranked citing authors all docs

39

#	Article	IF	CITATIONS
1	M33 condenses chromatin through nuclear body formation and methylation of both histone H3 lysine 9 and lysine 27. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119100.	1.9	O
2	Ocular disease-associated mutations diminish the mitotic chromosome retention ability of PAX6. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194751.	0.9	1
3	SUMO5, a Novel Poly-SUMO Isoform, Regulates PML Nuclear Bodies. Scientific Reports, 2016, 6, 26509.	1.6	149
4	Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome. Journal of Biological Chemistry, 2015, 290, 20556-20564.	1.6	29
5	The transcriptional repression activity of STAF65γ is facilitated by promoter tethering and nuclear import of class IIa histone deacetylases. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 579-591.	0.9	4
6	PAX3 loads onto pericentromeric heterochromatin during S phase through PARP1. Anticancer Research, 2014, 34, 4717-22.	0.5	1
7	PARP-2 regulates cell cycle-related genes through histone deacetylation and methylation independently of poly(ADP-ribosyl)ation. Biochemical and Biophysical Research Communications, 2013, 431, 58-64.	1.0	17
8	Loss of ZBRK1 Contributes to the Increase of KAP1 and Promotes KAP1-Mediated Metastasis and Invasion in Cervical Cancer. PLoS ONE, 2013, 8, e73033.	1.1	35
9	FKBPs in chromatin modification and cancer. Current Opinion in Pharmacology, 2011, 11, 301-307.	1.7	32
10	Beyond Histone and Deacetylase: An Overview of Cytoplasmic Histone Deacetylases and Their Nonhistone Substrates. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-15.	3.0	82
11	Histone Deacetylase 10 Relieves Repression on the Melanogenic Program by Maintaining the Deacetylation Status of Repressors. Journal of Biological Chemistry, 2010, 285, 7187-7196.	1.6	37
12	HDAC1/HDAC3 modulates PPARG2 transcription through the sumoylated CEBPD in hepatic lipogenesis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1803-1814.	1.9	47
13	Sumoylation of LAP1 is involved in the HDAC4-mediated repression of COX-2 transcription. Nucleic Acids Research, 2008, 36, 6066-6079.	6.5	36
14	Transcriptional and subcellular regulation of the TRIP-Br family. Gene, 2007, 388, 102-109.	1.0	25
15	Transcriptional repression activity of PAX3 is modulated by competition between corepressor KAP1 and heterochromatin protein 1. Biochemical and Biophysical Research Communications, 2006, 349, 573-581.	1.0	20
16	The transcriptional factor YY1 upregulates the novel invasion suppressor HLJ1 expression and inhibits cancer cell invasion. Oncogene, 2005, 24, 4081-4093.	2.6	81
17	Nuclear Proteins: Promising Targets for Cancer Drugs. Current Cancer Drug Targets, 2005, 5, 595-610.	0.8	17
18	Histone Deacetylases: Purification of the Enzymes, Substrates, and Assay Conditions. Methods in Enzymology, 2003, 377, 167-179.	0.4	11

#	Article	IF	Citations
19	The Metastasis-associated Proteins 1 and 2 Form Distinct Protein Complexes with Histone Deacetylase Activity. Journal of Biological Chemistry, 2003, 278, 42560-42568.	1.6	123
20	Functional Domains of Histone Deacetylase-3. Journal of Biological Chemistry, 2002, 277, 9447-9454.	1.6	201
21	NAPP2, a Peroxisomal Membrane Protein, Is Also a Transcriptional Corepressor. Genomics, 2002, 79, 423-431.	1.3	14
22	The FK506-binding protein 25 functionally associates with histone deacetylases and with transcription factor YY1. EMBO Journal, 2001, 20, 4814-4825.	3.5	103
23	Yin-Yang 1 Activates Interleukin-4 Gene Expression in T Cells. Journal of Biological Chemistry, 2001, 276, 48871-48878.	1.6	44
24	Regulation of Transcription Factor YY1 by Acetylation and Deacetylation. Molecular and Cellular Biology, 2001, 21, 5979-5991.	1,1	385
25	The Growth Suppressor PML Represses Transcription by Functionally and Physically Interacting with Histone Deacetylases. Molecular and Cellular Biology, 2001, 21, 2259-2268.	1.1	138
26	Histone Deacetylase Activity Represses Gamma Interferon-Inducible HLA-DR Gene Expression following the Establishment of a DNase I-Hypersensitive Chromatin Conformation. Molecular and Cellular Biology, 2001, 21, 6495-6506.	1,1	39
27	Histone Deacetylases Specifically Down-regulate p53-dependent Gene Activation. Journal of Biological Chemistry, 2000, 275, 20436-20443.	1.6	363
28	The histone deacetylase-3 complex contains nuclear receptor corepressors. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7202-7207.	3.3	321
29	Histone deacetylase interacts directly with DNA topoisomerase II. Nature Genetics, 2000, 26, 349-353.	9.4	159
30	Ligand-induced recruitment of a histone deacetylase in the negative-feedback regulation of the thyrotropin beta gene. EMBO Journal, 1999, 18, 5389-5398.	3.5	109
31	RBP1 Recruits Both Histone Deacetylase-Dependent and -Independent Repression Activities to Retinoblastoma Family Proteins. Molecular and Cellular Biology, 1999, 19, 6632-6641.	1.1	156
32	Cloning and Characterization of the Mouse Histone Deacetylase-2 Gene. Journal of Biological Chemistry, 1998, 273, 28921-28930.	1.6	23
33	The Hepatitis B Virus X-associated Protein, XAP3, Is a Protein Kinase C-binding Protein. Journal of Biological Chemistry, 1997, 272, 16482-16489.	1.6	59
34	Differential Effects of Nuclear Receptor Corepressor (N-CoR) Expression Levels on Retinoic Acid Receptor-Mediated Repression Support the Existence of Dynamically Regulated Corepressor Complexes. Molecular Endocrinology, 1997, 11, 682-692.	3.7	83
35	Isolation and Characterization of cDNAs Corresponding to an Additional Member of the Human Histone Deacetylase Gene Family. Journal of Biological Chemistry, 1997, 272, 28001-28007.	1.6	396
36	Histone Deacetylases Associated with the mSin3 Corepressor Mediate Mad Transcriptional Repression. Cell, 1997, 89, 349-356.	13.5	929

#	Article	IF	CITATION
37	A complex containing N-CoR, mSln3 and histone deacetylase mediates transcriptional repression. Nature, 1997, 387, 43-48.	13.7	1,204
38	Differential Effects of Nuclear Receptor Corepressor (N-CoR) Expression Levels on Retinoic Acid Receptor-Mediated Repression Support the Existence of Dynamically Regulated Corepressor Complexes. Molecular Endocrinology, 1997, 11, 682-692.	3.7	29
39	Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 12845-12850.	3.3	521
40	Cyclophilin A and FKBP12 Interact with YY1 and Alter Its Transcriptional Activity. Journal of Biological Chemistry, 1995, 270, 15187-15193.	1.6	94