Riccardo Filadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5205965/publications.pdf

Version: 2024-02-01

37 papers

2,841 citations

361296 20 h-index 377752 34 g-index

41 all docs

41 docs citations

times ranked

41

4585 citing authors

#	Article	IF	CITATIONS
1	Familial Alzheimer's disease presenilin-2 mutants affect Ca2+ homeostasis and brain network excitability. Aging Clinical and Experimental Research, 2021, 33, 1705-1708.	1.4	7
2	Better to keep in touch: investigating interâ€organelle crossâ€ŧalk. FEBS Journal, 2021, 288, 740-755.	2.2	13
3	The yin and yang of mitochondrial Ca2+ signaling in cell physiology and pathology. Cell Calcium, 2021, 93, 102321.	1.1	14
4	Analysis of the Effects of Hexokinase 2 Detachment From Mitochondria-Associated Membranes with the Highly Selective Peptide HK2pep. Bio-protocol, $2021, 11, e4087$.	0.2	2
5	Neuronal cell-based high-throughput screen for enhancers of mitochondrial function reveals luteolin as a modulator of mitochondria-endoplasmic reticulum coupling. BMC Biology, 2021, 19, 57.	1.7	21
6	Excitotoxicity Revisited: Mitochondria on the Verge of a Nervous Breakdown. Trends in Neurosciences, 2021, 44, 342-351.	4.2	27
7	Defining the molecular mechanisms of the mitochondrial permeability transition through genetic manipulation of F-ATP synthase. Nature Communications, 2021, 12, 4835.	5.8	52
8	Loosening ER–Mitochondria Coupling by the Expression of the Presenilin 2 Loop Domain. Cells, 2021, 10, 1968.	1.8	7
9	Presenilin-2 and Calcium Handling: Molecules, Organelles, Cells and Brain Networks. Cells, 2020, 9, 2166.	1.8	21
10	Mitochondrial calcium handling and neurodegeneration: when a good signal goes wrong. Current Opinion in Physiology, 2020, 17, 224-233.	0.9	12
11	Sarcoplasmic Reticulum-Mitochondria Kissing in Cardiomyocytes: Ca2+, ATP, and Undisclosed Secrets. Frontiers in Cell and Developmental Biology, 2020, 8, 532.	1.8	20
12	Hexokinase 2 displacement from mitochondriaâ€associated membranes prompts Ca ²⁺ â€dependent death of cancer cells. EMBO Reports, 2020, 21, e49117.	2.0	62
13	Defective Mitochondrial Pyruvate Flux Affects Cell Bioenergetics in Alzheimer's Disease-Related Models. Cell Reports, 2020, 30, 2332-2348.e10.	2.9	67
14	ER-mitochondria tethering and Ca2+ crosstalk: The IP3R team takes the field. Cell Calcium, 2019, 84, 102101.	1.1	5
15	PSEN2 (presenilin 2) mutants linked to familial Alzheimer disease impair autophagy by altering Ca ²⁺ homeostasis. Autophagy, 2019, 15, 2044-2062.	4.3	78
16	Calcium, mitochondria and cell metabolism: A functional triangle in bioenergetics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1068-1078.	1.9	257
17	Defective autophagy and Alzheimer's disease: is calcium the key?. Neural Regeneration Research, 2019, 14, 2081.	1.6	11
18	Mitofusin 2: from functions to disease. Cell Death and Disease, 2018, 9, 330.	2.7	230

#	Article	IF	Citations
19	TOM70 Sustains Cell Bioenergetics by Promoting IP3R3-Mediated ER to Mitochondria Ca2+ Transfer. Current Biology, 2018, 28, 369-382.e6.	1.8	109
20	SPLICS: a split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition. Cell Death and Differentiation, 2018, 25, 1131-1145.	5.0	174
21	Highlighting the endoplasmic reticulum-mitochondria connection: Focus on Mitofusin 2. Pharmacological Research, 2018, 128, 42-51.	3.1	63
22	Displacement of Hexokinase 2 from mitochondria induces mitochondrial Ca2+ overload and calpain-dependent cell death in cancer cells. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e5.	0.5	1
23	The endoplasmic reticulum-mitochondria coupling in health and disease: Molecules, functions and significance. Cell Calcium, 2017, 62, 1-15.	1.1	193
24	Mitochondrial Ca2+ Handling and Behind: The Importance of Being in Contact with Other Organelles. Biological and Medical Physics Series, 2017, , 3-39.	0.3	1
25	On the role of Mitofusin 2 in endoplasmic reticulum–mitochondria tethering. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2266-E2267.	3.3	50
26	[P1–196]: EFFECT OF PRESENILIN 2 MUTATION LINKED TO FAMILIAL ALZHEIMER's DISEASE ON CELL METABOLISM. Alzheimer's and Dementia, 2017, 13, P317.	0.4	0
27	[F3–06–02]: ALTERATIONS IN ERâ€MITOCHONDRIA CALCIUM TRANSFER INDUCED BY ALZHEIMER's DISEASEâ€LINKED PS2 MUTANTS IMPACT DIFFERENT CELL FUNCTIONALITIES. Alzheimer's and Dementia, 2017, 13, P886.	0.4	0
28	Beyond Intracellular Signaling: The Ins and Outs of Second Messengers Microdomains. Advances in Experimental Medicine and Biology, 2017, 981, 279-322.	0.8	17
29	The Concerted Action of Mitochondrial Dynamics and Positioning: New Characters in Cancer Onset and Progression. Frontiers in Oncology, 2017, 7, 102.	1.3	29
30	Presenilin 2 Modulates Endoplasmic Reticulum-Mitochondria Coupling by Tuning the Antagonistic Effect of Mitofusin 2. Cell Reports, 2016, 15, 2226-2238.	2.9	138
31	Mitofusinâ€2 knockdown increases <scp>ER</scp> â€"mitochondria contact and decreases amyloid βâ€peptide production. Journal of Cellular and Molecular Medicine, 2016, 20, 1686-1695.	1.6	124
32	Spying on organelle Ca2+ in living cells: the mitochondrial point of view. Journal of Endocrinological Investigation, 2015, 38, 39-45.	1.8	22
33	Mitofusin 2 ablation increases endoplasmic reticulum–mitochondria coupling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2174-81.	3.3	449
34	Generation and functions of second messengers microdomains. Cell Calcium, 2015, 58, 405-414.	1.1	58
35	Modulation of the endoplasmic reticulum–mitochondria interface in Alzheimer's disease and related models. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7916-7921.	3.3	381
36	Endoplasmic Reticulum-mitochondria connections, calcium cross-talk and cell fate: a closer inspection., 2012,, 75-106.		0

#	Article	IF	CITATIONS
37	Mitochondrial Ca2+ homeostasis: mechanism, role, and tissue specificities. Pflugers Archiv European Journal of Physiology, 2012, 464, 3-17.	1.3	125