List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5205851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Broadband Dielectric Relaxation Study at Ambient and Elevated Pressure of Molecular Dynamics of Pharmaceutical: Indomethacin. Journal of Physical Chemistry B, 2009, 113, 12536-12545.	1.2	125
2	Dielectric Relaxation and Crystallization Kinetics of Ibuprofen at Ambient and Elevated Pressure. Journal of Physical Chemistry B, 2010, 114, 6579-6593.	1.2	106
3	Study of molecular dynamics of pharmaceutically important protic ionic liquid-verapamil hydrochloride. I. Test of thermodynamic scaling. Journal of Chemical Physics, 2009, 131, .	1.2	84
4	Study of the Amorphous Glibenclamide Drug: Analysis of the Molecular Dynamics of Quenched and Cryomilled Material. Molecular Pharmaceutics, 2010, 7, 1692-1707.	2.3	79
5	The True Johariâ^'Goldstein β-Relaxation of Monosaccharides. Journal of Physical Chemistry B, 2006, 110, 25045-25049.	1.2	68
6	Confinement for More Space: A Larger Free Volume and Enhanced Glassy Dynamics of 2-Ethyl-1-hexanol in Nanopores. Journal of Physical Chemistry Letters, 2015, 6, 3708-3712.	2.1	68
7	Dielectric Studies on Mobility of the Glycosidic Linkage in Seven Disaccharides. Journal of Physical Chemistry B, 2008, 112, 12816-12823.	1.2	66
8	Molecular mobility in liquid and glassy states of Telmisartan (TEL) studied by Broadband Dielectric Spectroscopy. European Journal of Pharmaceutical Sciences, 2009, 38, 395-404.	1.9	65
9	Molecular dynamics of itraconazole at ambient and high pressure. Physical Chemistry Chemical Physics, 2013, 15, 20742.	1.3	62
10	Negative Pressure Vitrification of the Isochorically Confined Liquid in Nanopores. Physical Review Letters, 2015, 115, 265702.	2.9	60
11	Dielectric relaxation studies and dissolution behavior of amorphous verapamil hydrochloride. Journal of Pharmaceutical Sciences, 2010, 99, 828-839.	1.6	59
12	Enhancement of Amorphous Celecoxib Stability by Mixing It with Octaacetylmaltose: The Molecular Dynamics Study. Molecular Pharmaceutics, 2012, 9, 894-904.	2.3	59
13	Ion Dynamics under Pressure in an Ionic Liquid. Journal of Physical Chemistry B, 2008, 112, 3110-3114.	1.2	54
14	Enhanced Polymerization Rate and Conductivity of Ionic Liquid-Based Epoxy Resin. Macromolecules, 2017, 50, 3262-3272.	2.2	50
15	Identifying the Origins of Two Secondary Relaxations in Polysaccharides. Journal of Physical Chemistry B, 2009, 113, 10088-10096.	1.2	49
16	On the kinetics of tautomerism in drugs: New application of broadband dielectric spectroscopy. Journal of Chemical Physics, 2010, 133, 094507.	1.2	49
17	Decoupling between the Interfacial and Core Molecular Dynamics of Salol in 2D Confinement. Journal of Physical Chemistry C, 2015, 119, 14366-14374.	1.5	49
18	Identification of the Molecular Motions Responsible for the Slower Secondary (β) Relaxation in Sucrose. Journal of Physical Chemistry B, 2008, 112, 7662-7668.	1.2	48

#	Article	IF	CITATIONS
19	Studies on the Temperature and Time Induced Variation in the Segmental and Chain Dynamics in Poly(propylene glycol) Confined at the Nanoscale. Macromolecules, 2016, 49, 6678-6686.	2.2	48
20	Effect of Cryogrinding on Chemical Stability of the Sparingly Water-Soluble Drug Furosemide. Pharmaceutical Research, 2011, 28, 3220-3236.	1.7	42
21	Interplay between Core and Interfacial Mobility and Its Impact on the Measured Glass Transition: Dielectric and Calorimetric Studies. Journal of Physical Chemistry C, 2016, 120, 7373-7380.	1.5	39
22	Do Intermolecular Interactions Control Crystallization Abilities of Glass-Forming Liquids?. Journal of Physical Chemistry B, 2011, 115, 11537-11547.	1.2	38
23	Mutarotation in <scp>d</scp> -Fructose Melt Monitored by Dielectric Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 4379-4383.	1.2	37
24	Predicting Nanoscale Dynamics of a Glass-Forming Liquid from Its Macroscopic Bulk Behavior and Vice Versa. Journal of Physical Chemistry Letters, 2017, 8, 696-702.	2.1	37
25	The peculiar behavior of the molecular dynamics of a glass-forming liquid confined in native porous materials – the role of negative pressure. Physical Chemistry Chemical Physics, 2016, 18, 23709-23714.	1.3	35
26	The Role of Interfacial Energy and Specific Interactions on the Behavior of Poly(propylene glycol) Derivatives under 2D Confinement. Macromolecules, 2018, 51, 4840-4852.	2.2	35
27	Dielectric Relaxation Study on Tramadol Monohydrate and Its Hydrochloride Salt. Journal of Pharmaceutical Sciences, 2010, 99, 94-106.	1.6	33
28	Molecular Dynamics in Supercooled Liquid and Glassy States of Antibiotics: Azithromycin, Clarithromycin and Roxithromycin Studied by Dielectric Spectroscopy. Advantages Given by the Amorphous State. Molecular Pharmaceutics, 2012, 9, 1748-1763.	2.3	33
29	Origin of the Commonly Observed Secondary Relaxation Process in Saccharides. Journal of Physical Chemistry B, 2010, 114, 11272-11281.	1.2	32
30	Molecular Dynamics of the Supercooled Pharmaceutical Agent Posaconazole Studied via Differential Scanning Calorimetry and Dielectric and Mechanical Spectroscopies. Molecular Pharmaceutics, 2013, 10, 3934-3945.	2.3	30
31	Studying the Impact of Modified Saccharides on the Molecular Dynamics and Crystallization Tendencies of Model API Nifedipine. Molecular Pharmaceutics, 2015, 12, 3007-3019.	2.3	30
32	Communication: Synperiplanar to antiperiplanar conformation changes as underlying the mechanism of Debye process in supercooled ibuprofen. Journal of Chemical Physics, 2013, 139, 111103.	1.2	28
33	Molecular dynamics of itraconazole confined in thin supported layers. RSC Advances, 2014, 4, 28432-28438.	1.7	28
34	Following kinetics and dynamics of DGEBA-aniline polymerization inÂnanoporous native alumina oxide membranes – FTIR andÂdielectricÂstudies. Polymer, 2015, 68, 253-261.	1.8	28
35	Effect of glass structure on the dynamics of the secondary relaxation in diisobutyl and diisoctyl phthalates. Physical Review B, 2005, 72, .	1.1	27
36	High pressure study on molecular mobility of leucrose. Journal of Chemical Physics, 2008, 129, 084501.	1.2	27

#	Article	IF	CITATIONS
37	Comprehensive studies on physical and chemical stability in liquid and glassy states of telmisartan (TEL): solubility advantages given by cryomilled and quenched material. Philosophical Magazine, 2011, 91, 1926-1948.	0.7	27
38	Communication: Slow supramolecular mode in amine and thiol derivatives of 2-ethyl-1-hexanol revealed by combined dielectric and shear-mechanical studies. Journal of Chemical Physics, 2015, 143, 181102.	1.2	27
39	Characterization and identification of the nature of two different kinds of secondary relaxation in one glass-former. Journal of Non-Crystalline Solids, 2006, 352, 4672-4678.	1.5	26
40	Molecular Dynamics of the Cryomilled Base and Hydrochloride Ziprasidones by Means of Dielectric Spectroscopy. Journal of Pharmaceutical Sciences, 2011, 100, 2642-2657.	1.6	26
41	A New Way of Stabilization of Furosemide upon Cryogenic Grinding by Using Acylated Saccharides Matrices. The Role of Hydrogen Bonds in Decomposition Mechanism. Molecular Pharmaceutics, 2013, 10, 1824-1835.	2.3	26
42	Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: Dependence on chemical microstructure. Journal of Chemical Physics, 2006, 124, 164511.	1.2	25
43	Impact of Inter- and Intramolecular Interactions on the Physical Stability of Indomethacin Dispersed in Acetylated Saccharides. Molecular Pharmaceutics, 2014, 11, 2935-2947.	2.3	25
44	High pressure dielectric studies on the structural and orientational glass. Journal of Chemical Physics, 2016, 144, 054503.	1.2	25
45	Polymerization of Monomeric Ionic Liquid Confined within Uniaxial Alumina Pores as a New Way of Obtaining Materials with Enhanced Conductivity. ACS Applied Materials & Interfaces, 2016, 8, 29779-29790.	4.0	25
46	Study of molecular dynamics of the pharmaceutically important protic ionic liquid verapamil hydrochloride. II. Test of entropic models. Journal of Chemical Physics, 2010, 132, 094506.	1.2	24
47	Kinetic processes in supercooled monosaccharides upon melting: Application of dielectric spectroscopy in the mutarotation studies of D-ribose. Journal of Chemical Physics, 2010, 132, 195104.	1.2	24
48	Comparative Study on the Molecular Dynamics of a Series of Polypropylene Glycols. Macromolecules, 2013, 46, 1973-1980.	2.2	24
49	Kinetics and Dynamics of the Curing System. High Pressure Studies. Macromolecules, 2014, 47, 4288-4297.	2.2	24
50	A facile route to well-defined imidazolium-based poly(ionic liquid)s of enhanced conductivity via RAFT. Polymer Chemistry, 2017, 8, 5433-5443.	1.9	24
51	Highly Efficient ROP Polymerization of Îμ-Caprolactone Catalyzed by Nanoporous Alumina Membranes. How the Confinement Affects the Progress and Product of ROP Reaction. Macromolecules, 2018, 51, 4588-4597.	2.2	24
52	The Impact of Molecular Weight on the Behavior of Poly(propylene glycol) Derivatives Confined within Alumina Templates. Macromolecules, 2019, 52, 3516-3529.	2.2	24
53	Identification of the slower secondary relaxation's nature in maltose by means of theoretical and dielectric studies. Journal of Chemical Physics, 2009, 131, 125103.	1.2	23
54	Comparative dielectric studies on two hydrogen-bonded and van der Waals liquids. Physical Review E, 2011, 83, 061506.	0.8	23

#	Article	IF	CITATIONS
55	Time and Temperature as Key Parameters Controlling Dynamics and Properties of Spatially Restricted Polymers. Macromolecules, 2017, 50, 5188-5193.	2.2	23
56	Variation in the Molecular Dynamics of DGEBA Confined within AAO Templates above and below the Glass-Transition Temperature. Journal of Physical Chemistry C, 2018, 122, 28033-28044.	1.5	23
57	Pressureâ€induced polymerization of tetraethylene glycol dimethacrylate. Journal of Polymer Science Part A, 2008, 46, 3795-3801.	2.5	22
58	Recent advances in fundamental understanding of glass transition. Journal of Non-Crystalline Solids, 2008, 354, 5085-5088.	1.5	22
59	Glassy dynamics and physical aging in fucose saccharides as studied by infrared- and broadband dielectric spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 20641.	1.3	22
60	Crystallization Kinetics under Confinement. Manipulation of the Crystalline Form of Salol by Varying Pore Diameter. Crystal Growth and Design, 2016, 16, 1218-1227.	1.4	22
61	Impact of the Interfacial Energy and Density Fluctuations on the Shift of the Glass-Transition Temperature of Liquids Confined in Pores. Journal of Physical Chemistry C, 2019, 123, 5549-5556.	1.5	22
62	Crystallization Behavior and Relaxation Dynamics of Supercooled <i>S</i> -Ketoprofen and the Racemic Mixture along an Isochrone. Crystal Growth and Design, 2015, 15, 3257-3263.	1.4	21
63	Interplay between structural static and dynamical parameters as a key factor to understand peculiar behaviour of associated liquids. Journal of Molecular Liquids, 2020, 319, 114084.	2.3	21
64	Dielectric Studies on Molecular Dynamics of Two Important Disaccharides: Sucrose and Trehalose. Molecular Pharmaceutics, 2012, 9, 1559-1569.	2.3	20
65	xmins:mmi= http://www.w3.org/1998/Math/Math/Math/M display="inline"> <mml:mi>î±</mml:mi> -, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>î²</mml:mi>-, and<mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>0.8</td><td>20</td></mml:math></mml:math 	0.8	20
66	The importance of the activation volume for the description of the molecular dynamics of glass-forming liquids. Journal of Physics Condensed Matter, 2012, 24, 065105.	0.7	19
67	High pressure water-initiated ring opening polymerization for the synthesis of well-defined α-hydroxy-ï‰-(carboxylic acid) polycaprolactones. Green Chemistry, 2017, 19, 3618-3627.	4.6	19
68	Impact of Imidazolium-Based Ionic Liquids on the Curing Kinetics and Physicochemical Properties of Nascent Epoxy Resins. Macromolecules, 2020, 53, 6341-6352.	2.2	19
69	Impact of high pressure on the progress of polymerization of DGEBA cured with different amine hardeners: dielectric and DSC studies. RSC Advances, 2015, 5, 105934-105942.	1.7	18
70	Dielectric relaxation study of the dynamics of monosaccharides: D-ribose and 2-deoxy-D-ribose. Journal of Physics Condensed Matter, 2008, 20, 335104.	0.7	17
71	Dielectric properties of two diastereoisomers of the arabinose and their equimolar mixture. Carbohydrate Research, 2009, 344, 2547-2553.	1.1	17
72	Effect of Pressure on Tautomers' Equilibrium in Supercooled Glibenclamide Drug: Analysis of Fragility Behavior. Journal of Physical Chemistry B, 2010, 114, 14815-14820.	1.2	17

#	Article	IF	CITATIONS
73	Study of dynamics and crystallization kinetics of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile at ambient and elevated pressure. Journal of Chemical Physics, 2012, 136, 234509.	1.2	17
74	Studying the catalytic activity of DBU and TBD upon water-initiated ROP of $\hat{l}\mu$ -caprolactone under different thermodynamic conditions. Polymer Chemistry, 2019, 10, 6047-6061.	1.9	17
75	Probing of structural relaxation times in the glassy state of sucrose and trehalose based on dynamical properties of two secondary relaxation processes. Physical Review E, 2011, 83, 061502.	0.8	16
76	Dynamic Glass Transition and Electrical Conductivity Behavior Dominated by Proton Hopping Mechanism Studied in the Family of Hyperbranched Bis-MPA Polyesters. Macromolecules, 2014, 47, 5798-5807.	2.2	16
77	The effect of hydrogen bonding propensity and enantiomeric composition on the dynamics of supercooled ketoprofen – dielectric, rheological and NMR studies. Physical Chemistry Chemical Physics, 2016, 18, 10585-10593.	1.3	16
78	Studying the Crystallization of Various Polymorphic Forms of Nifedipine from Binary Mixtures with the Use of Different Experimental Techniques. Molecular Pharmaceutics, 2017, 14, 2116-2125.	2.3	16
79	Structure-property relationships of tailored imidazolium- and pyrrolidinium-based poly(ionic liquid)s. Solid-like vs. gel-like systems. Polymer, 2020, 192, 122262.	1.8	16
80	Observation of the dynamics of clusters in d-glucose with the use of dielectric spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 723-730. upercooled and glassy DNA and RNA	1.3	15
81	nucleosides: <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>l²</mml:mi></mml:math> -adenosine, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline">l²-thymidine, and<mml:math< td=""><td>0.8</td><td>15</td></mml:math<></mml:math 	0.8	15
82	The kinetics of mutarotation in L-fucose as monitored by dielectric and infrared spectroscopy. Journal of Chemical Physics, 2014, 140, 215101.	1.2	15
83	Impact of low molecular weight excipient octaacetylmaltose on the liquid crystalline ordering and molecular dynamics in the supercooled liquid and glassy state of itraconazole. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 1094-1104.	2.0	15
84	Enhancement of the Physical Stability of Amorphous Indomethacin by Mixing it with OctaacetyImaltose. Inter and Intra Molecular Studies. Pharmaceutical Research, 2014, 31, 2887-2903.	1.7	15
85	The Improvement of the Dissolution Rate of Ziprasidone Free Base from Solid Oral Formulations. AAPS PharmSciTech, 2015, 16, 922-933.	1.5	15
86	Changes in dynamics of the glass-forming pharmaceutical nifedipine in binary mixtures with octaacetylmaltose. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 185-191.	2.0	15
87	High pressure RAFT of sterically hindered ionic monomers. Studying relationship between rigidity of the polymer backbone and conductivity. Polymer, 2018, 140, 158-166.	1.8	15
88	Dielectric relaxation of \hat{I} ±-tocopherol acetate (vitamin E). Physical Review E, 2007, 75, 011903.	0.8	14
89	Temperature and Volume Effect on the Molecular Dynamics of Supercooled Ibuprofen at Ambient and Elevated Pressure. Molecular Pharmaceutics, 2011, 8, 1975-1979.	2.3	14
90	Comment on "Slow Debye-type peak observed in the dielectric response of polyalcohols―[J. Chem. Phys. 132, 044504 (2010)]. Journal of Chemical Physics, 2011, 134, 037101.	1.2	14

#	Article	IF	CITATIONS
91	Studying of crystal growth and overall crystallization of naproxen from binary mixtures. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 113, 75-87.	2.0	14
92	Studying molecular dynamics of the slow, structural, and secondary relaxation processes in series of substituted ibuprofens. Journal of Chemical Physics, 2018, 148, 224505.	1.2	14
93	Are hydrogen supramolecular structures being suppressed upon nanoscale confinement? The case of monohydroxy alcohols. Journal of Colloid and Interface Science, 2020, 576, 217-229.	5.0	14
94	Description of mutarotational kinetics in supercooled monosugars. Journal of Non-Crystalline Solids, 2010, 356, 738-742.	1.5	13
95	Mechanism of mutarotation in supercooled liquid phase: Studies on L-sorbose. Journal of Chemical Physics, 2012, 137, 124504.	1.2	13
96	High pressure polymerization of glycidol. Kinetics studies. Polymer, 2014, 55, 1984-1990.	1.8	13
97	Studies on the radical polymerization of monomeric ionic liquids: nanostructure ordering as a key factor controlling the reaction and properties of nascent polymers. Polymer Chemistry, 2016, 7, 6363-6374.	1.9	13
98	High pressure studies on structural and secondary relaxation dynamics in silyl derivative of D-glucose. Journal of Chemical Physics, 2017, 147, 064502.	1.2	13
99	Impact of Intermolecular Interactions, Dimeric Structures on the Glass Forming Ability of Naproxen, and a Series of Its Derivatives. Molecular Pharmaceutics, 2018, 15, 4764-4776.	2.3	13
100	High-pressure dielectric studies on 1,6-anhydro-β-D-mannopyranose (plastic crystal) and 2,3,4-tri-O-acetyl-1,6-anhydro-β-D-glucopyranose (canonical glass). Journal of Chemical Physics, 2018, 148, 204510.	1.2	13
101	Breakdown of the isochronal structural (α) and secondary (JG β) exact superpositioning in probucol - A low molecular weight pharmaceutical. Journal of Molecular Liquids, 2020, 299, 112169.	2.3	13
102	Studies on mechanism of reaction and density behavior during anhydrous D-fructose mutarotation in the supercooled liquid state. Journal of Chemical Physics, 2011, 134, 175102.	1.2	12
103	Studies on the hard confinement effect on the RAFT polymerization of a monomeric ionic liquid. Unexpected triggering of RAFT polymerization at 30 ŰC. Polymer Chemistry, 2018, 9, 335-345.	1.9	12
104	Conformational changes underlying variation in the structural dynamics of materials confined at the nanometric scale. Physical Chemistry Chemical Physics, 2018, 20, 30200-30208.	1.3	12
105	Studying structural and local dynamics in model H-bonded active ingredient — Curcumin in the supercooled and glassy states at various thermodynamic conditions. European Journal of Pharmaceutical Sciences, 2019, 135, 38-50.	1.9	12
106	Efficient metal-free strategies for polymerization of a sterically hindered ionic monomer through the application of hard confinement and high pressure. RSC Advances, 2019, 9, 6396-6408.	1.7	12
107	Relationship between Nanoscale Supramolecular Structure, Effectiveness of Hydrogen Bonds, and Appearance of Debye Process. Journal of Physical Chemistry C, 2020, 124, 2672-2679.	1.5	12
108	The application of spatially restricted geometries as a unique route to produce well-defined poly(vinyl pyrrolidones) <i>via</i> free radical polymerisation. Chemical Communications, 2019, 55, 6441-6444.	2.2	11

#	Article	IF	CITATIONS
109	Does the Johari–Goldstein β-Relaxation Exist in Polypropylene Glycols?. Macromolecules, 2015, 48, 4151-4157.	2.2	10
110	Is There a Liquid–Liquid Phase Transition in Confined Triphenyl Phosphite?. Journal of Physical Chemistry C, 2017, 121, 19442-19450.	1.5	10
111	Studies on the internal medium-range ordering and high pressure dynamics in modified ibuprofens. Physical Chemistry Chemical Physics, 2020, 22, 295-305.	1.3	10
112	Correlation between Locally Ordered (Hydrogen-Bonded) Nanodomains and Puzzling Dynamics of Polymethysiloxane Derivative. Macromolecules, 2020, 53, 10225-10233.	2.2	10
113	Observation of the nearly constant loss in super rigid saccharides: in search of a hidden crossover in dynamics deep in the glassy state. Physical Chemistry Chemical Physics, 2016, 18, 8901-8910.	1.3	9
114	Interplay between the static ordering and dynamical heterogeneities determining the dynamics of rotation and ordinary liquid phases in 1,6-anhydro-β-D-glucose. Scientific Reports, 2017, 7, 42103.	1.6	9
115	Anhydrosaccharides—A new class of the fragile plastic crystals. Journal of Chemical Physics, 2018, 148, 074501.	1.2	9
116	Impact of Confinement on the Dynamics and H-Bonding Pattern in Low-Molecular Weight Poly(propylene glycols). Journal of Physical Chemistry C, 2020, 124, 17607-17621.	1.5	9
117	Synthetic strategy matters: The study of a different kind of PVP as micellar vehicles of metronidazole. Journal of Molecular Liquids, 2021, 332, 115789.	2.3	9
118	The Impact of the Length of Alkyl Chain on the Behavior of Benzyl Alcohol Homologous. The Interplay Between Dispersive and Hydrogen Bond Interactions. Physical Chemistry Chemical Physics, 2021, 23, 23796-23807.	1.3	9
119	Dielectric studies of molecular motions in glassy and liquid nicotine. Journal of Physics Condensed Matter, 2006, 18, 5607-5615.	0.7	8
120	Elucidating the existence of the excess wing in an ionic liquid on applying pressure. Journal of Physics Condensed Matter, 2008, 20, 244107.	0.7	8
121	High-Pressure Studies on the Chain and Segmental Dynamics of a Series of Poly(propylene glycol) Derivatives. Macromolecules, 2019, 52, 5658-5669.	2.2	8
122	Unique Behavior of Poly(propylene glycols) Confined within Alumina Templates Having a Nanostructured Interface. Nano Letters, 2020, 20, 5714-5719.	4.5	8
123	The impact of various azole antifungals on the liquid crystalline ordering in itraconazole. Journal of Molecular Liquids, 2020, 307, 112959.	2.3	8
124	Dynamics of the slow mode in the family of six-carbon monosaccharides monitored by dielectric spectroscopy. Journal of Physics Condensed Matter, 2010, 22, 365103.	0.7	7
125	Thermodynamic scaling of molecular dynamics in supercooled liquid state of pharmaceuticals: Itraconazole and ketoconazole. Journal of Chemical Physics, 2015, 142, 224507.	1.2	7
126	The influence of the nanocurvature on the surface interactions and molecular dynamics of model liquid confined in cylindrical pores. Journal of Molecular Liquids, 2020, 298, 111973.	2.3	7

#	Article	IF	CITATIONS
127	High pressure aging studies on the low-molecular weight glass-forming pharmaceutical – Probucol. Journal of Molecular Liquids, 2021, 321, 114626.	2.3	7
128	Anormal Thermal History Effect on the Structural Dynamics of Probucol Infiltrated into Porous Alumina. Journal of Physical Chemistry C, 2021, 125, 3901-3912.	1.5	7
129	Stereoregulation, molecular weight, and dispersity control of PMMA synthesized <i>via</i> free-radical polymerization supported by the external high electric field. Chemical Communications, 2022, 58, 5653-5656.	2.2	7
130	Additive property of secondary relaxation processes in di-n-octyl and di-isooctyl phthalates: Signature of non-Johari-Goldstein relaxation. Journal of Chemical Physics, 2007, 126, 174501.	1.2	6
131	The Impact of Liquid Crystalline Phase Ordering on the Thermodynamic Scaling of Itraconazole. Journal of Physical Chemistry C, 2019, 123, 4558-4566.	1.5	6
132	Studies on the molecular dynamics of acetylated oligosaccharides of different topologies (linear) Tj ETQq0 0 0 rg	gBT_/Overlo	ock 10 Tf 50 5
133	Does the molecular mobility and flexibility of the saccharide ring affect the glass-forming ability of naproxen in binary mixtures?. European Journal of Pharmaceutical Sciences, 2020, 141, 105091.	1.9	6
134	Influence of High Pressure on the Local Order and Dynamical Properties of the Selected Azole Antifungals. Journal of Physical Chemistry B, 2020, 124, 11949-11961.	1.2	6
135	Pressureâ€assisted strategy for the synthesis of vinyl pyrrolidoneâ€based macroâ€star photoiniferters. A route to star block copolymers. Journal of Polymer Science, 2020, 58, 1393-1399.	2.0	6
136	Local structure and molecular dynamics of highly polar propylene carbonate derivative infiltrated within alumina and silica porous templates. Journal of Chemical Physics, 2021, 154, 064701.	1.2	6
137	Anomalous narrowing of the shape of the structural process in derivatives of trehalose at high pressure. The role of the internal structure. Journal of Molecular Liquids, 2021, 336, 116321.	2.3	6
138	Hard confinement systems as effective <i>nanoreactors</i> for <i>in situ</i> photo-RAFT: towards control over molecular weight distribution and morphology. Polymer Chemistry, 2021, 12, 1105-1113.	1.9	6
139	Aromaticity effect on supramolecular aggregation. Aromatic vs. cyclic monohydroxy alcohols. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 276, 121235.	2.0	6
140	Free-radical polymerization of 2-hydroxyethyl methacrylate (HEMA) supported by a high electric field. Polymer Chemistry, 2022, 13, 2850-2859.	1.9	6
141	Pressure-induced polymerization of phenoxyethyl acrylate. Journal of Physics Condensed Matter, 2008, 20, 244121.	0.7	5
142	Theoretical and experimental studies on the internal mobility of two sulfonylurea agents: glibenclamide and glimepiride. Journal of Physics Condensed Matter, 2011, 23, 425901.	0.7	5
143	Experimental (FTIR, BDS) and theoretical analysis of mutarotation kinetics of <scp>d</scp> -fructose mixed with different alcohols in the supercooled region. RSC Advances, 2016, 6, 57634-57646.	1.7	5
144	Studying tautomerism in an important pharmaceutical glibenclamide confined in the thin nanometric layers. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110319.	2.5	5

9

#	Article	lF	CITATIONS
145	Direct insight into the kinetics of the high-pressure step-growth polymerization of DGEBA/aniline model system. Polymer, 2019, 172, 322-329.	1.8	5
146	Influence of the Internal Structure and Intermolecular Interactions on the Correlation between Structural (α) and Secondary (β-JG) Relaxation below the Glass Transition Temperature in Neat Probucol and Its Binary Mixtures with Modified Saccharides. Journal of Physical Chemistry B, 2020, 124, 4821-4834.	1.2	5
147	High-pressure experiments as a novel perspective to study the molecular dynamics of glass-forming materials confined at the nanoscale. Nanoscale, 2020, 12, 10600-10608.	2.8	5
148	ls a Dissociation Process Underlying the Molecular Origin of the Debye Process in Monohydroxy Alcohols?. Journal of Physical Chemistry B, 2021, 125, 2960-2967.	1.2	5
149	Systematic studies on the dynamics, intermolecular interactions and local structure in the alkyl and phenyl substituted butanol isomers. Journal of Molecular Liquids, 2022, 346, 117098.	2.3	5
150	Light-mediated controlled and classical polymerizations of less-activated monomers under high-pressure conditions. Polymer Chemistry, 2021, 12, 4418-4427.	1.9	5
151	The impact of chemical structure on the formation of the medium-range order and dynamical properties of selected antifungal APIs. Physical Chemistry Chemical Physics, 2020, 22, 28202-28212.	1.3	4
152	Pressure-assisted solvent- and catalyst-free production of well-defined poly(1-vinyl-2-pyrrolidone) for biomedical applications. RSC Advances, 2020, 10, 21593-21601.	1.7	4
153	The effect of high-pressure on organocatalyzed ROP of \hat{I}^3 -butyrolactone. Polymer, 2021, 233, 124166.	1.8	4
154	Sugar decorated star-shaped (co)polymers with resveratrol-based core – physicochemical and biological properties. Journal of Materials Science, 2022, 57, 2257-2276.	1.7	4
155	Comment on "Study of dielectric relaxations of anhydrous trehalose and maltose glasses―[J. Chem. Phys. 134, 014508 (2011)]. Journal of Chemical Physics, 2011, 135, 167102.	1.2	3
156	A study on the progress of mutarotation above and below the Tg and the relationship between constant rates and structural relaxation times. Physical Chemistry Chemical Physics, 2017, 19, 20949-20958.	1.3	3
157	Unexpected Crossover in the kinetics of mutarotation in the supercooled region: the role of H-bonds. Scientific Reports, 2018, 8, 5312.	1.6	3
158	Melts of Octaacetyl Sucrose as Oral-Modified Release Dosage Forms for Delivery of Poorly Soluble Compound in Stable Amorphous Form. AAPS PharmSciTech, 2018, 19, 951-960.	1.5	3
159	How does the type of counterion influence the polymerization rate and thermal properties of tailored cholineâ€based linear―and starâ€shaped poly(ionic liquid)s PILs?. Journal of Polymer Science Part A, 2018, 56, 2681-2691.	2.5	3
160	Studies on dynamics and isomerism in supercooled photochromic compound Aberchrome 670 with the use of different experimental techniques. Physical Chemistry Chemical Physics, 2018, 20, 18009-18019.	1.3	3
161	Studying the Crystal Growth of Selected Active Pharmaceutical Ingredients from Single- and Two-Component Systems above and below the Glass Transition Temperature. Crystal Growth and Design, 2019, 19, 1031-1040.	1.4	3
162	Supramolecular structures of self-assembled oligomers under confinement. Soft Matter, 2022, 18, 4930-4936.	1.2	3

#	Article	IF	CITATIONS
163	Studies on the Molecular Dynamics at High Pressures as a Key to Identify the Sub-Rouse Mode in PMMS. Macromolecules, 2022, 55, 5581-5590.	2.2	3
164	The impact of the size of acetylated cyclodextrin on the stability of amorphous metronidazole. International Journal of Pharmaceutics, 2022, 624, 122025.	2.6	3
165	Crosslinking polymerization of tetraethylene glycol dimethacrylate under high pressure. Journal of Physics: Conference Series, 2008, 121, 092002.	0.3	2
166	Mutarotation in biologically important pure L-fucose and its enantiomer. Journal of Physics Condensed Matter, 2013, 25, 375101.	0.7	2
167	Varying thermodynamic conditions as a new way to tune the molecular order in glassy itraconazole. Journal of Molecular Liquids, 2019, 286, 110920.	2.3	2
168	How does pressure affect the molecular dynamics, intramolecular interactions, and the relationship between structural (α) and secondary (JG-β) relaxation above and below the glass transition temperature in binary mixtures of H-bonded API – probucol and acetylated saccharides?. European Journal of Pharmaceutical Sciences, 2021, 164, 105894.	1.9	2
169	Structure of 1,6-anhydro-β- <scp>D</scp> -glucopyranose in plastic crystal, orientational glass, liquid and ordinary glass forms: molecular modeling and X-ray diffraction studies. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2021, 77, 138-149.	0.5	2
170	Impact of the Chain Length and Topology of the Acetylated Oligosaccharide on the Crystallization Tendency of Naproxen from Amorphous Binary Mixtures. Molecular Pharmaceutics, 2021, 18, 347-358.	2.3	2
171	Studies on the Vitrified and Cryomilled Bosentan. Molecular Pharmaceutics, 2022, 19, 80-90.	2.3	2
172	High pressure as a novel tool for the cationic ROP of Î ³ -butyrolactone. RSC Advances, 2021, 11, 34806-34819.	1.7	2
173	Variation in the local ordering, H-bonding pattern and molecular dynamics in the pressure densified ritonavir. Journal of Molecular Liquids, 2022, 351, 118666.	2.3	2
174	The Importance of a Class of Secondary Relaxation Process in Glass-Forming Liquids. AIP Conference Proceedings, 2006, , .	0.3	1
175	Dramatic slowing down of the conformational equilibrium in the silyl derivative of glucose in the vicinity of the glass transition temperature. Soft Matter, 2019, 15, 7429-7437.	1.2	1
176	Influence of Annealing in the Close Vicinity of <i>T</i> _g on the Reorganization within Dimers and Its Impact on the Crystallization Kinetics of Gemfibrozil. Molecular Pharmaceutics, 2020, 17, 990-1000.	2.3	1
177	Transformation of the Strongly Hydrogen Bonded System into van der Waals one Reflected in Molecular Dynamics. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 359-376.	0.5	1