Silvana Martini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5205838/publications.pdf Version: 2024-02-01

SILVANA ΜΑΡΤΙΝΙ

#	Article	IF	CITATIONS
1	Protein-based hydrogelled emulsions and their application as fat replacers in meat products: A review. Critical Reviews in Food Science and Nutrition, 2022, 62, 640-655.	5.4	36
2	Development of an optical flow through detector for bubbles, crystals and particles in oils. Physical Chemistry Chemical Physics, 2022, 24, 1544-1552.	1.3	2
3	Relationship between oil binding capacity and physical properties of interesterified soybean oil. JAOCS, Journal of the American Oil Chemists' Society, 2022, 99, 313-330.	0.8	2
4	Probing the mechanisms of enhanced crystallisation of APS in the presence of ultrasound. Physical Chemistry Chemical Physics, 2022, 24, 11552-11561.	1.3	1
5	Degree of oxidation of sonicated soybean oil using various sonication process parameters. International Journal of Food Science and Technology, 2022, 57, 4473-4482.	1.3	Ο
6	Relationship between the physical properties of butter and water loss during lamination. JAOCS, Journal of the American Oil Chemists' Society, 2022, 99, 585-597.	0.8	2
7	Phenolic compounds as antioxidants to improve oxidative stability of menhaden oil-based structured lipid as butterfat analog. Food Chemistry, 2021, 334, 127584.	4.2	18
8	Highâ€Intensity <scp>Ultrasoundâ€Induced</scp> Crystallization of Mango Kernel Fat. JAOCS, Journal of the American Oil Chemists' Society, 2021, 98, 43-52.	0.8	6
9	Elucidating mechanisms involved in flavor generation of dry-aged beef loins using metabolomics approach. Food Research International, 2021, 139, 109969.	2.9	32
10	Enhanced crystallisation kinetics of edible lipids through the action of a bifurcated streamer. Analyst, The, 2021, 146, 4883-4894.	1.7	1
11	Functional properties of dairy phospholipid gels. Journal of Dairy Science, 2021, 104, 1412-1423.	1.4	Ο
12	Palm-based fat crystallized at different temperatures with and without high-intensity ultrasound in batch and in a scraped surface heat exchanger. LWT - Food Science and Technology, 2021, 138, 110593.	2.5	7
13	Influence of sonication, temperature, and agitation, on the physical properties of a palm-based fat crystallized in a continuous system. Ultrasonics Sonochemistry, 2021, 74, 105550.	3.8	4
14	<scp><i>JAOCS</i></scp> : What is next?. JAOCS, Journal of the American Oil Chemists' Society, 2021, 98, 607-607.	0.8	0
15	Crystallization Behavior and Quality of Frozen Meat. Foods, 2021, 10, 2707.	1.9	18
16	Tailoring Crystalline Structure Using Highâ€Intensity Ultrasound to Reduce Oil Migration in a Low Saturated Fat. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 141-155.	0.8	19
17	Incorporation of high intensity ultrasound (HIU) to a scraped surface heat exchanger: Effect of HIU position. Journal of Food Engineering, 2020, 274, 109824.	2.7	8
18	Effect of storage time on physical properties of sonocrystallized allâ€purpose shortening. Journal of Food Science, 2020, 85, 3391-3399.	1.5	6

#	Article	IF	CITATIONS
19	Sonocrystallization of a Palmâ€Based Fat with Low Level of Saturation in a Scraped Surface Heat Exchanger. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 1253-1264.	0.8	5
20	Potential Effect of Cavitation on the Physical Properties of Interesterified Soybean Oil Using Highâ€Intensity Ultrasound: A Longâ€Term Storage Study. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 1105-1117.	0.8	2
21	Effect of processing conditions as highâ€intensity ultrasound, agitation, and cooling temperature on the physical properties of a low saturated fat. Journal of Food Science, 2020, 85, 3380-3390.	1.5	6
22	Cavitation clusters in lipid systems – Ring-up, bubble population, and bifurcated streamer lifetime. Ultrasonics Sonochemistry, 2020, 67, 105168.	3.8	3
23	Isothermal Crystallization of Palm Oilâ€Based Fats with and without the Addition of Essential Oils. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 861-878.	0.8	5
24	Sonocrystallization as a tool to reduce oil migration by changing physical properties of a palm kernel fat. Journal of Food Science, 2020, 85, 964-971.	1.5	12
25	Tailoring physical properties of monoglycerides oleogels using high-intensity ultrasound. Food Research International, 2020, 134, 109231.	2.9	28
26	Retardation of Crystallization through the Addition of Dairy Phospholipids. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 1205-1218.	0.8	5
27	Chemical Composition and Nutritional Information of Fats Used in Fillings of Sandwich Cookies. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 1173-1179.	0.8	2
28	Interlaboratory Measurement of Rheological Properties of Tomato Salad Dressing. Journal of Food Science, 2019, 84, 3204-3212.	1.5	7
29	Cavitation Clusters in Lipid Systems: The Generation of a Bifurcated Streamer and the Dual Collapse of a Bubble Cluster. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 1197-1204.	0.8	8
30	Physical Properties of Monoglycerides Oleogels Modified by Concentration, Cooling Rate, and Highâ€Intensity Ultrasound. Journal of Food Science, 2019, 84, 2549-2561.	1.5	49
31	Crystallization of interesterified soybean oil using a scraped surface heat exchanger with high intensity ultrasound. Journal of Food Engineering, 2019, 263, 341-347.	2.7	9
32	Enzymatic Modification of Menhaden Oil to Incorporate Caprylic and/or Stearic Acid. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 761-775.	0.8	8
33	Numerical modeling of wear behavior of solid fats. Journal of Food Engineering, 2019, 260, 12-21.	2.7	5
34	Use of Highâ€Intensity Ultrasound to Change the Physical Properties of Oleogels and Emulsion Gels. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 681-691.	0.8	30
35	Modifying the physical properties of butter using high-intensity ultrasound. Journal of Dairy Science, 2019, 102, 1918-1926.	1.4	25
36	Interactions between candelilla wax and saturated triacylglycerols in oleogels. Food Research International, 2019, 121, 900-909.	2.9	39

#	Article	IF	CITATIONS
37	Physical properties of emulsion gels formulated with sonicated soy protein isolate. International Journal of Food Science and Technology, 2019, 54, 451-459.	1.3	24
38	Effect of Water Addition on Physical Properties of Emulsion Gels. Food Biophysics, 2019, 14, 30-40.	1.4	31
39	Sonocrystallization of Interesterified Soybean Oil: Effect of Saturation Level and Supercooling. Journal of Food Science, 2018, 83, 902-910.	1.5	22
40	Functional emulsion gels with potential application in meat products. Journal of Food Engineering, 2018, 222, 29-37.	2.7	100
41	Effect of cream aging temperature and agitation on butter properties. Journal of Dairy Science, 2018, 101, 7724-7735.	1.4	22
42	Dry-aging improves meat quality attributes of grass-fed beef loins. Meat Science, 2018, 145, 285-291.	2.7	72
43	Physical Properties of Candelilla Wax, Monoacylglycerols, and Fully Hydrogenated Oil Oleogels. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 797-811.	0.8	54
44	Sonocrystallization of Interesterified Soybean Oil With and Without Agitation. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 571-582.	0.8	19
45	Sonocrystallization of a Tristearinâ€Free Fat. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 699-707.	0.8	6
46	Sonocrystallization of Interesterified Fats with 20 and 30% C16:0 at <i>sn</i> â€₽ Position. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 3-18.	0.8	22
47	Cavitation clusters in lipid systems – surface effects, local heating and streamer formation. Physical Chemistry Chemical Physics, 2017, 19, 6785-6791.	1.3	8
48	Sensory characterisation of a highâ€protein beverage. International Journal of Dairy Technology, 2017, 70, 432-438.	1.3	8
49	Effects of High Intensity Ultrasound Frequency and Highâ€Speed Agitation on Fat Crystallization. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 1063-1076.	0.8	25
50	Sonocrystallization of Interesterified Fats with 20 and 30% of Stearic Acid at the snâ€2 Position and Their Physical Blends. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 1045-1062.	0.8	19
51	Consumer sensory evaluation and chemical composition of beef gluteus medius and triceps brachii steaks from cattle finished on forage or concentrate diets1. Journal of Animal Science, 2017, 95, 1553-1564.	0.2	16
52	Consumer sensory evaluation and chemical composition of beef gluteus medius and triceps brachii steaks from cattle finished on forage or concentrate diets. Journal of Animal Science, 2017, 95, 1553.	0.2	7
53	Physical characterization of crystalline networks formed by binary blends of waxes in soybean oil. Food Research International, 2016, 89, 245-253.	2.9	43
54	2016: a Year of Change for JAOCS. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 1573-1574.	0.8	0

#	Article	IF	CITATIONS
55	Legume finishing provides beef with positive human dietary fatty acid ratios and consumer preference comparable with grain-finished beef1. Journal of Animal Science, 2016, 94, 2184-2197.	0.2	38
56	Effects of high intensity ultrasound and emulsifiers on crystallization behavior of coconut oil and palm olein. Food Research International, 2016, 86, 54-63.	2.9	25
57	Phase Behavior of Binary Blends of Four Different Waxes. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 543-554.	0.8	47
58	Comparison of milk oxidation by exposure to LED and fluorescent light. Journal of Dairy Science, 2016, 99, 2537-2544.	1.4	34
59	Enzymatic Interesterification of High Oleic Sunflower Oil and Tripalmitin or Tristearin. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 61-67.	0.8	25
60	High-Intensity Ultrasound to Improve Physical and Functional Properties of Lipids. Annual Review of Food Science and Technology, 2016, 7, 23-41.	5.1	33
61	Physical Characterization of Wax/Oil Crystalline Networks. Journal of Food Science, 2015, 80, C989-97.	1.5	32
62	Determining the Effects of High Intensity Ultrasound on the Reduction of Microbes in Milk and Orange Juice Using Response Surface Methodology. International Journal of Food Science, 2015, 2015, 1-7.	0.9	20
63	Effect of Cooling Rate and Temperature Cycles on Polymorphic Behavior of Sunflower Oil Stearins for Applications as Trans-fat Alternatives in Foods. Food and Bioprocess Technology, 2015, 8, 1779-1790.	2.6	12
64	Physicochemical and Oxidative Changes in Sonicated Interesterified Soybean Oil. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 305-308.	0.8	9
65	Application of High-Intensity Ultrasound to Palm Oil in a Continuous System. Journal of Agricultural and Food Chemistry, 2015, 63, 319-327.	2.4	36
66	Increasing stringiness of low-fat mozzarella string cheese using polysaccharides. Journal of Dairy Science, 2015, 98, 4243-4254.	1.4	25
67	Effect of Highâ€Intensity Ultrasound on the Crystallization Behavior of Highâ€Stearic Highâ€Oleic Sunflower Oil Soft Stearin. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 473-482.	0.8	24
68	Importance of grass-legume choices on cattle grazing behavior, performance, and meat characteristics1,2. Journal of Animal Science, 2014, 92, 2309-2324.	0.2	25
69	Effect of Lipid Content on Saltiness Perception: A Psychophysical Study. Journal of Sensory Studies, 2014, 29, 404-412.	0.8	22
70	Effect of lipid physical characteristics on the quality of baked products. Food Research International, 2014, 55, 239-246.	2.9	15
71	Effect of High-Intensity Ultrasound and Cooling Rate on the Crystallization Behavior of Beeswax in Edible Oils. Journal of Agricultural and Food Chemistry, 2014, 62, 10192-10202.	2.4	62
72	Application of High Intensity Ultrasound to a Zeroâ€ <i>trans</i> Shortening During Temperature Cycling at Different Cooling Rates. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1155-1169.	0.8	20

#	Article	IF	CITATIONS
73	In situ synchrotron radiation X-ray scattering study on the effect of a stearic sucrose ester on polymorphic behavior of a new sunflower oil variety. Food Research International, 2014, 64, 9-17.	2.9	24
74	Preparation and physical properties of calcium pectinate films modified with sunflower wax. European Journal of Lipid Science and Technology, 2014, 116, 1534-1545.	1.0	10
75	Effect of Lactose Monolaurate and High Intensity Ultrasound on Crystallization Behavior of Anhydrous Milk Fat. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 977-987.	0.8	30
76	Physical Properties of Aqueous Solutions of Pectin Containing Sunflower Wax. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 791-802.	0.8	10
77	Sonocrystallization of Fats. , 2013, , .		14
78	Crystallization Behavior of Highâ€Oleic Highâ€Stearic Sunflower Oil Stearins Under Dynamic and Static Conditions. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1773-1786.	0.8	16
79	Oil globule microstructure of protein/polysaccharide or protein/protein bilayer emulsions at various pH. Food Hydrocolloids, 2013, 30, 559-566.	5.6	18
80	Chemical characterisation of pasture―and grainâ€fed beef related to meat quality and flavour attributes. International Journal of Food Science and Technology, 2013, 48, 484-495.	1.3	43
81	Polymorphic behavior during isothermal crystallization of high stearic high oleic sunflower oil stearins. Food Research International, 2013, 51, 86-97.	2.9	28
82	An Overview of Ultrasound. , 2013, , 7-16.		2
83	Sonocrystallization of Fats. , 2013, , 41-62.		5
84	Common Uses of Power Ultrasound in the Food Industry. , 2013, , 27-33.		1
85	Ultrasound Process Parameters. , 2013, , 17-25.		Ο
86	Sensory characteristics and functionality of sonicated whey. Food Research International, 2012, 49, 694-701.	2.9	28
87	Development of a beef flavor lexicon and its application to compare the flavor profile and consumer acceptance of rib steaks from grass- or grain-fed cattle. Meat Science, 2012, 90, 116-121.	2.7	93
88	Fortification of cheese with vitamin D3 using dairy protein emulsions as delivery systems. Journal of Dairy Science, 2012, 95, 4768-4774.	1.4	38
89	Bubble and Crystal Formation in Lipid Systems During Highâ€Intensity Insonation. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 1921-1928.	0.8	28
90	Identification and Quantification of Flavor Attributes present in Chicken, Lamb, Pork, Beef, and Turkey. Journal of Food Science, 2012, 77, S115-21.	1.5	23

#	Article	IF	CITATIONS
91	Influence of ιâ€Carrageenan, Pectin, and Gelatin on the Physicochemical Properties and Stability of Milk Proteinâ€Stabilized Emulsions. Journal of Food Science, 2012, 77, C253-60.	1.5	23
92	Crystallization Behavior of Anhydrous Milk Fatâ^'Sunflower Oil Wax Blends. Journal of Agricultural and Food Chemistry, 2011, 59, 2689-2695.	2.4	55
93	Using High Intensity Ultrasound as a Tool To Change the Functional Properties of Interesterified Soybean Oil. Journal of Agricultural and Food Chemistry, 2011, 59, 10712-10722.	2.4	62
94	Evaluation of flavour characteristics of docosahexaenoic acid-fortified emulsions as a function of crystallisation temperature. Food Chemistry, 2010, 122, 737-743.	4.2	5
95	EFFECTS OF THREE EMULSION COMPOSITIONS ON TASTE THRESHOLDS AND INTENSITY RATINGS OF FIVE TASTE COMPOUNDS. Journal of Sensory Studies, 2010, 25, 861-875.	0.8	20
96	Altering Functional Properties of Fats Using Power Ultrasound. Journal of Food Science, 2010, 75, E208-14.	1.5	80
97	Chemical and physical deterioration of bulk oils and shortenings, spreads and frying oils. , 2010, , 413-438.		3
98	Emulsifying properties of lactose-amines in oil-in-water emulsions. Food Research International, 2010, 43, 1111-1115.	2.9	3
99	Optimizing the use of power ultrasound to decrease turbidity in whey protein suspensions. Food Research International, 2010, 43, 2444-2451.	2.9	70
100	Effect of oil content and processing conditions on the thermal behaviour and physicochemical stability of oilâ€inâ€water emulsions. International Journal of Food Science and Technology, 2009, 44, 206-215.	1.3	15
101	Effect of cooling rate on lipid crystallization in oil-in-water emulsions. Food Research International, 2009, 42, 847-855.	2.9	39
102	Increasing omega fatty acid content in cow's milk through diet manipulation: Effect on milk flavor. Journal of Dairy Science, 2009, 92, 1378-1386.	1.4	22
103	Fortification of reduced-fat Cheddar cheese with n-3 fatty acids: Effect on off-flavor generation. Journal of Dairy Science, 2009, 92, 1876-1884.	1.4	31
104	Effect of Processing Conditions on the Crystallization Behavior and Destabilization Kinetics of Oilâ€inâ€Water Emulsions. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 119-128.	0.8	14
105	Effect of High Intensity Ultrasound on Crystallization Behavior of Anhydrous Milk Fat. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 621-628.	0.8	121
106	Effect of the Addition of Waxes on the Crystallization Behavior of Anhydrous Milk Fat. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 1097-1104.	0.8	56
107	Effect of emulsifiers on shortenings. Lipid Technology, 2008, 20, 180-183.	0.3	2
108	Physical properties of shortenings with lowâ€ŧrans fatty acids as affected by emulsifiers and storage conditions. European Journal of Lipid Science and Technology, 2008, 110, 172-182.	1.0	30

#	Article	IF	CITATIONS
109	Control of Listeria monocytogenes in Ready-to-Eat Meats Containing Sodium Levulinate, Sodium Lactate, or a Combination of Sodium Lactate and Sodium Diacetate. Journal of Food Science, 2008, 73, M239-M244.	1.5	33
110	How to Land the Academic Job. , 2008, , 1-20.		0
111	Oxidation kinetics of soybean oil/anhydrous milk fat blends: A differential scanning calorimetry study. Food Research International, 2007, 40, 1030-1037.	2.9	37
112	The Water Vapor Permeability of Polycrystalline Fat Barrier Films. Journal of Agricultural and Food Chemistry, 2006, 54, 1880-1886.	2.4	15
113	A Probabilistic Approach to Model the Nonisothermal Nucleation of Triacylglycerol Melts. Crystal Growth and Design, 2006, 6, 1199-1205.	1.4	19
114	Structural factors responsible for the permeability of water vapor through fat barrier films. Food Research International, 2006, 39, 550-558.	2.9	14
115	Polymorphism and growth behavior of low-trans fat blends formulated with and without emulsifiers. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 489-496.	0.8	46
116	Structure and properties of fat crystal networks. , 2006, , 142-169.		21
117	Storage of sunflower-seeds: variation on the wax content of the oil. European Journal of Lipid Science and Technology, 2005, 107, 74-79.	1.0	20
118	Nucleation behavior of blended high-melting fractions of milk fat as affected by emulsifiers. European Journal of Lipid Science and Technology, 2005, 107, 877-885.	1.0	40
119	In situ monitoring of solid fat content by means of pulsed nuclear magnetic resonance spectrometry and ultrasonics. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 305-312.	0.8	36
120	New technologies to determine solid fat content on-line. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 313-317.	0.8	35
121	Attenuation of ultrasonic waves: Influence of microstructure and solid fat content. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 319-328.	0.8	35
122	Microencapsulating Properties of Trehalose and of its Blends with Sucrose and Lactose. Journal of Food Science, 2005, 70, e401.	1.5	15
123	Effect of sucrose esters on the crystallization behavior of bulk oil systems. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 209-211.	0.8	14
124	Crystallization of sunflower oil waxes. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 525-532.	0.8	23
125	Effects of Salts on Crystallization Kinetics and Rheological Behavior of Concentrated α,α-Trehalose Solutions. Journal of Food Science, 2003, 68, 2644-2650.	1.5	3
126	Effect of Sucrose Ester Addition on Nucleation and Growth Behavior of Milk Fatâ^'Sunflower Oil Blends. Journal of Agricultural and Food Chemistry, 2003, 51, 6550-6557.	2.4	39

#	Article	IF	CITATIONS
127	X-Ray diffraction and crystal size. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 315-316.	0.8	23
128	Practical considerations in nucleation studies: The polarized light microscopy technique. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 411-412.	0.8	9
129	Effect of cooling rate on crystallization behavior of milk fat fraction/sunflower oil blends. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 1055-1062.	0.8	78
130	Effect of processing conditions on microstructure of milk fat fraction/sunflower oil blends. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 1063-1068.	0.8	45
131	Effect of Sucrose Esters and Sunflower Oil Addition on Crystalline Microstructure of a High-melting Milk Fat Fraction. Journal of Food Science, 2002, 67, 3412-3418.	1.5	23
132	Effects of Sucrose Esters on Isothermal Crystallization and Rheological Behavior of Blends of Milk-fat Fraction Sunflower Oil. Journal of Food Science, 2002, 67, 3419-3426.	1.5	33
133	Effect of Cooling Rate on Nucleation Behavior of Milk Fatâ^'Sunflower Oil Blends. Journal of Agricultural and Food Chemistry, 2001, 49, 3223-3229.	2.4	66
134	Determination of wax concentration in sunflower seed oil. JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 1087-1093.	0.8	23
135	Microstructure of Dairy Fat Products. , 0, , 72-103.		7
136	Impact of highâ€intensity ultrasound on physical properties and degree of oxidation of lipase modified menhaden oil with caprylic acid and/or stearic acid. JAOCS, Journal of the American Oil Chemists' Society, 0, , .	0.8	1
137	Fat content of cream affects the capacity of butter to hold water approved. International Journal of Dairy Technology, 0,	1.3	1