
Stepan Stverak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5205460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of multiscale structures at the quasi-perpendicular Venus bow shock. Astronomy and Astrophysics, 2022, 660, A64.	5.1	5
2	Correction to: Electron Kappa Distributions in the Solar Wind: Cause of the Acceleration or Consequence of the Expansion?. Astrophysics and Space Science Library, 2022, , C1-C1.	2.7	0
3	Energetic ions in the Venusian system: Insights from the first Solar Orbiter flyby. Astronomy and Astrophysics, 2021, 656, A7.	5.1	9
4	Statistical study of electron density turbulence and ion-cyclotron waves in the inner heliosphere: Solar Orbiter observations. Astronomy and Astrophysics, 2021, 656, A16.	5.1	5
5	Kinetic electrostatic waves and their association with current structures in the solar wind. Astronomy and Astrophysics, 2021, 656, A23.	5.1	12
6	Solar Orbiter's first Venus flyby: Observations from the Radio and Plasma Wave instrument. Astronomy and Astrophysics, 2021, 656, A18.	5.1	14
7	Density fluctuations associated with turbulence and waves. Astronomy and Astrophysics, 2021, 656, A19.	5.1	24
8	First dust measurements with the Solar Orbiter Radio and Plasma Wave instrument. Astronomy and Astrophysics, 2021, 656, A30.	5.1	12
9	Observations of whistler mode waves by Solar Orbiter's RPW Low Frequency Receiver (LFR): In-flight performance and first results. Astronomy and Astrophysics, 2021, 656, A17.	5.1	6
10	Solar Orbiter/RPW antenna calibration in the radio domain and its application to type III burst observations. Astronomy and Astrophysics, 2021, 656, A33.	5.1	5
11	First-year ion-acoustic wave observations in the solar wind by the RPW/TDS instrument on board Solar Orbiter. Astronomy and Astrophysics, 2021, 656, A14.	5.1	13
12	Whistler waves observed by Solar Orbiter/RPW between 0.5 AU and 1 AU. Astronomy and Astrophysics, 2021, 656, A24.	5.1	19
13	The Solar Orbiter Radio and Plasma Waves (RPW) instrument (Corrigendum). Astronomy and Astrophysics, 2021, 654, C2.	5.1	2
14	Solar Orbiter's encounter with the tail of comet C/2019 Y4 (ATLAS): Magnetic field draping and cometary pick-up ion waves. Astronomy and Astrophysics, 2021, 656, A39.	5.1	4
15	First observations and performance of the RPW instrument on board the Solar Orbiter mission. Astronomy and Astrophysics, 2021, 656, A41.	5.1	9
16	Electron Kappa Distributions in the Solar Wind: Cause of the Acceleration or Consequence of the Expansion?. Astrophysics and Space Science Library, 2021, , 39-51.	2.7	2
17	Whistler Waves and Electron Properties in the Inner Heliosphere: Helios Observations. Astrophysical Journal, 2020, 897, 118.	4.5	26
18	Solar Wind Plasma Particles Organized by the Flow Speed. Solar Physics, 2020, 295, 1.	2.5	10

STEPAN STVERAK

#	Article	IF	CITATIONS
19	Radial Evolution of Sunward Strahl Electrons in the Inner Heliosphere. Solar Physics, 2020, 295, 1.	2.5	12
20	The Solar Orbiter Radio and Plasma Waves (RPW) instrument. Astronomy and Astrophysics, 2020, 642, A12.	5.1	80
21	The Solar Orbiter Science Activity Plan. Astronomy and Astrophysics, 2020, 642, A3.	5.1	67
22	Anticorrelation between the Bulk Speed and the Electron Temperature in the Pristine Solar Wind: First Results from the <i>Parker Solar Probe</i> and Comparison with <i>Helios</i> . Astrophysical Journal, Supplement Series, 2020, 246, 62.	7.7	55
23	Electron mirror instability: particle-in-cell simulations. Journal of Plasma Physics, 2018, 84, .	2.1	24
24	Design of the Low Voltage Power Supply for Radio and Plasma Waves Investigation Instrument and ESA/JUICE Mission. Northern International Medical College Journal, 2018, 8, .	0.0	0
25	Firehose constraints of the bi-Kappa-distributed electrons: a zero-order approach for the suprathermal electrons in the solar wind. Monthly Notices of the Royal Astronomical Society, 2017, 464, 564-571.	4.4	39
26	The Electron Temperature and Anisotropy in the Solar Wind. Comparison of the Core and Halo Populations. Solar Physics, 2016, 291, 2165-2179.	2.5	81
27	Properties of Hermean plasma belt: Numerical simulations and comparison with MESSENGER data. Journal of Geophysical Research: Space Physics, 2016, 121, 413-431.	2.4	13
28	Electron energetics in the expanding solar wind via Helios observations. Journal of Geophysical Research: Space Physics, 2015, 120, 8177-8193.	2.4	48
29	Proton thermal energetics in the solar wind: Helios reloaded. Journal of Geophysical Research: Space Physics, 2013, 118, 1351-1365.	2.4	97
30	IMPALAS: Investigation of MagnetoPause Activity using Longitudinally-Aligned Satellites—a mission concept proposed for the ESA M3 2020/2022 launch. Experimental Astronomy, 2012, 33, 365-401.	3.7	0
31	Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	92
32	Radial evolution of nonthermal electron populations in the low″atitude solar wind: Helios, Cluster, and Ulysses Observations. Journal of Geophysical Research, 2009, 114, .	3.3	234
33	Electron temperature anisotropy constraints in the solar wind. Journal of Geophysical Research, 2008, 113, .	3.3	219
34	The DEMETER Science Mission Centre. Planetary and Space Science, 2006, 54, 428-440.	1.7	76
35	The ISL Langmuir probe experiment processing onboard DEMETER: Scientific objectives, description and first results. Planetary and Space Science, 2006, 54, 472-486.	1.7	199
36	Solar wind current sheets and deHoffmann-Teller analysis. First results from Solar Orbiter's DC electric field measurements. Astronomy and Astrophysics, 0, , .	5.1	13

STEPAN STVERAK

#	Article	IF	CITATIONS
37	A Case for Electron-Astrophysics. Experimental Astronomy, 0, , 1.	3.7	11
38	Solar Orbiter Radio and Plasma Waves - Time Domain Sampler: In-flight performance and first results. Astronomy and Astrophysics, 0, , .	5.1	6
39	Implications of Kappa Suprathermal Halo of the Solar Wind Electrons. Frontiers in Astronomy and Space Sciences, 0, 9, .	2.8	3