Guanhui Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5205294/publications.pdf

Version: 2024-02-01

74 7,817 34
papers citations h-index

76 76 76 12239
all docs docs citations times ranked citing authors

73

g-index

#	Article	IF	CITATIONS
1	Graphene Quantum Dots Derived from Carbon Fibers. Nano Letters, 2012, 12, 844-849.	4.5	2,041
2	Cancer Cell Membrane–Biomimetic Nanoparticles for Homologous-Targeting Dual-Modal Imaging and Photothermal Therapy. ACS Nano, 2016, 10, 10049-10057.	7.3	657
3	Smart Human Serum Albumin-Indocyanine Green Nanoparticles Generated by Programmed Assembly for Dual-Modal Imaging-Guided Cancer Synergistic Phototherapy. ACS Nano, 2014, 8, 12310-12322.	7.3	632
4	Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nature Nanotechnology, 2022, 17, 759-767.	15.6	318
5	Protein-assisted fabrication of nano-reduced graphene oxide for combined inÂvivo photoacoustic imaging and photothermal therapy. Biomaterials, 2013, 34, 5236-5243.	5.7	276
6	Structure, Properties and Applications of Twoâ€Dimensional Hexagonal Boron Nitride. Advanced Materials, 2021, 33, e2101589.	11.1	239
7	Binary and Ternary Atomic Layers Built from Carbon, Boron, and Nitrogen. Advanced Materials, 2012, 24, 4878-4895.	11.1	219
8	Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nature Communications, 2021, 12, 4225.	5.8	218
9	Electrically Insulating Thermal Nano-Oils Using 2D Fillers. ACS Nano, 2012, 6, 1214-1220.	7.3	214
10	Artificially Stacked Atomic Layers: Toward New van der Waals Solids. Nano Letters, 2012, 12, 3518-3525.	4.5	211
11	Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles. Biomaterials, 2014, 35, 6037-6046.	5 . 7	180
12	Indocyanine Green-Loaded Polydopamine-Reduced Graphene Oxide Nanocomposites with Amplifying Photoacoustic and Photothermal Effects for Cancer Theranostics. Theranostics, 2016, 6, 1043-1052.	4.6	174
13	Efficient Alkaline Water/Seawater Hydrogen Evolution by a Nanorodâ€Nanoparticleâ€Structured Niâ€MoN Catalyst with Fast Waterâ€Dissociation Kinetics. Advanced Materials, 2022, 34, e2201774.	11.1	165
14	Activatable albumin-photosensitizer nanoassemblies for triple-modal imaging and thermal-modulated photodynamic therapy of cancer. Biomaterials, 2016, 93, 10-19.	5.7	140
15	Indocyanine green–loaded polydopamine–iron ions coordination nanoparticles for photoacoustic/magnetic resonance dual-modal imaging-guided cancer photothermal therapy. Nanoscale, 2016, 8, 17150-17158.	2.8	125
16	Metal–Semiconductor Phaseâ€Transition in WSe ₂ <i>sub><i>sub></i> Monolayer. Advanced Materials, 2017, 29, 1603991.</i>	11.1	123
17	Smart hyaluronidase-actived theranostic micelles for dual-modal imaging guided photodynamic therapy. Biomaterials, 2016, 101, 10-19.	5.7	111
18	Synthesis of Fluorinated Graphene Oxide and its Amphiphobic Properties. Particle and Particle Systems Characterization, 2013, 30, 266-272.	1,2	106

#	Article	IF	Citations
19	Lithium-conducting covalent-organic-frameworks as artificial solid-electrolyte-interphase on silicon anode for high performance lithium ion batteries. Nano Energy, 2020, 72, 104657.	8.2	93
20	Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	93
21	3D-printed silica with nanoscale resolution. Nature Materials, 2021, 20, 1506-1511.	13.3	93
22	Molecular beam epitaxy of single crystalline GaN nanowires on a flexible Ti foil. Applied Physics Letters, 2016, 108, .	1.5	79
23	Molecular Beam Epitaxy of GaN Nanowires on Epitaxial Graphene. Nano Letters, 2017, 17, 5213-5221.	4.5	72
24	Designing nanoscaled hybrids from atomic layered boron nitride with silver nanoparticle deposition. Journal of Materials Chemistry A, 2014, 2, 3148.	5.2	65
25	Dextran-based redox-responsive doxorubicin prodrug micelles for overcoming multidrug resistance. Polymer Chemistry, 2013, 4, 5793.	1.9	64
26	Photosensitizer-conjugated redox-responsive dextran theranostic nanoparticles for near-infrared cancer imaging and photodynamic therapy. Polymer Chemistry, 2014, 5, 874-881.	1.9	63
27	Gold Nanoclusters–Indocyanine Green Nanoprobes for Synchronous Cancer Imaging, Treatment, and Real-Time Monitoring Based on Fluorescence Resonance Energy Transfer. ACS Applied Materials & Samp; Interfaces, 2017, 9, 25114-25127.	4.0	63
28	In Situ Synthesis of Lead-Free Halide Perovskite–COF Nanocomposites as Photocatalysts for Photoinduced Polymerization in Both Organic and Aqueous Phases. , 2022, 4, 464-471.		63
29	Amineâ€Functionalized Carbon Nanodot Electrocatalysts Converting Carbon Dioxide to Methane. Advanced Materials, 2022, 34, e2105690.	11.1	59
30	Nearâ€Infraredâ€Emitting Twoâ€Dimensional Codes Based on Latticeâ€Strained Core/(Doped) Shell Quantum Dots with Long Fluorescence Lifetime. Advanced Materials, 2014, 26, 6313-6317.	11.1	53
31	Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating. Nature Communications, 2022, 13, 262.	5.8	52
32	Siteâ€Selective Trimetallic Heterogeneous Nanostructures for Enhanced Electrocatalytic Performance. Advanced Materials, 2015, 27, 5573-5577.	11.1	50
33	Millisecond Conversion of Metastable 2D Materials by Flash Joule Heating. ACS Nano, 2021, 15, 1282-1290.	7.3	48
34	Redox-responsive dextran based theranostic nanoparticles for near-infrared/magnetic resonance imaging and magnetically targeted photodynamic therapy. Biomaterials Science, 2017, 5, 762-771.	2.6	40
35	Compact chelator-free Ni-integrated CuS nanoparticles with tunable near-infrared absorption and enhanced relaxivity for in vivo dual-modal photoacoustic/MR imaging. Nanoscale, 2015, 7, 17631-17636.	2.8	37
36	Highly Bright and Compact Alloyed Quantum Rods with Near Infrared Emitting: a Potential Multifunctional Nanoplatform for Multimodal Imaging In Vivo. Advanced Functional Materials, 2014, 24, 3897-3905.	7.8	34

#	Article	IF	CITATIONS
37	Highly penetrative liposome nanomedicine generated by a biomimetic strategy for enhanced cancer chemotherapy. Biomaterials Science, 2018, 6, 1546-1555.	2.6	34
38	Apparent Ferromagnetism in Exfoliated Ultrathin Pyrite Sheets. Journal of Physical Chemistry C, 2021, 125, 18927-18935.	1.5	30
39	Smac Therapeutic Peptide Nanoparticles Inducing Apoptosis of Cancer Cells for Combination Chemotherapy with Doxorubicin. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8005-8012.	4.0	27
40	Metal Oxide Catalysts for the Synthesis of Covalent Organic Frameworks and One-Step Preparation of Covalent Organic Framework-Based Composites. Chemistry of Materials, 2021, 33, 6158-6165.	3.2	25
41	Synthesis of Porous N-Rich Carbon/MXene from MXene@Polypyrrole Hybrid Nanosheets as Oxygen Reduction Reaction Electrocatalysts. Journal of the Electrochemical Society, 2020, 167, 116503.	1.3	24
42	Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow–mesoporous magnetic nanoreactors. Nanoscale, 2015, 7, 806-813.	2.8	22
43	Construction of cost-effective bimetallic nanoparticles on titanium carbides as a superb catalyst for promoting hydrolysis of ammonia borane. RSC Advances, 2018, 8, 843-847.	1.7	22
44	Highly Dispersed Bimetallic Nanoparticles Supported on Titanium Carbides for Remarkable Hydrogen Release from Hydrous Hydrazine. ChemCatChem, 2018, 10, 2200-2204.	1.8	22
45	Chitin-derived porous carbon loaded with Co, N and S with enhanced performance towards electrocatalytic oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Electrochimica Acta, 2019, 304, 350-359.	2.6	22
46	Preparation and antibacterial performance testing of Ag nanoparticles embedded biological materials. Applied Surface Science, 2015, 330, 237-244.	3.1	21
47	ZEB1 knockdown mediated using polypeptide cationic micelles inhibits metastasis and effects sensitization to a chemotherapeutic drug for cancer therapy. Nanoscale, 2014, 6, 10084-10094.	2.8	19
48	Synthesis of silver nanoparticles on surface-functionalized multi-walled carbon nanotubes by ultraviolet initiated photo-reduction method. Applied Surface Science, 2014, 317, 49-55.	3.1	19
49	Toward edges-rich MoS ₂ layers via chemical liquid exfoliation triggering distinctive magnetism. Materials Research Letters, 2017, 5, 267-275.	4.1	19
50	Perovskiteâ€Derivative Valleytronics. Advanced Materials, 2020, 32, e2004111.	11.1	19
51	Iron oxide nanoparticles protected by NIR-active multidentate-polymers as multifunctional nanoprobes for NIRF/PA/MR trimodal imaging. Nanoscale, 2016, 8, 775-779.	2.8	18
52	Synthesis and photocurrent of amorphous boron nanowires. Nanotechnology, 2014, 25, 335701.	1.3	16
53	Structural Characteristics at the Adductor Muscle and Shell Interface in Mussel. Applied Biochemistry and Biotechnology, 2013, 171, 1203-1211.	1.4	15
54	Scaleâ€Enhanced Magnetism in Exfoliated Atomically Thin Magnetite Sheets. Small, 2020, 16, e2004208.	5.2	15

#	Article	IF	Citations
55	Polypeptide micelles with dual pH activatable dyes for sensing cells and cancer imaging. Nanoscale, 2014, 6, 5416-5424.	2.8	14
56	Axial GaAs/Ga(As, Bi) nanowire heterostructures. Nanotechnology, 2019, 30, 425601.	1.3	14
57	Living Cell Multilifetime Encoding Based on Lifetime-Tunable Lattice-Strained Quantum Dots. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13187-13191.	4.0	13
58	Anchoring ultrafine RhNi nanoparticles on titanium carbides/manganese oxide as an efficient catalyst for hydrogen generation from hydrous hydrazine. New Journal of Chemistry, 2018, 42, 20001-20006.	1.4	13
59	Electrochemical behavior of microbiologically influenced corrosion on Fe3Al in marine environment. Acta Metallurgica Sinica (English Letters), 2009, 22, 313-320.	1.5	12
60	Correlated Nanoscale Analysis of the Emission from Wurtzite versus Zincblende (In,Ga)As/GaAs Nanowire Core–Shell Quantum Wells. Nano Letters, 2019, 19, 4448-4457.	4.5	11
61	Functional group tuning of two-dimensional carbon nanosheets for boosting oxygen reduction electrocatalysis. Carbon, 2021, 185, 395-403.	5.4	10
62	Gasâ€Phase Fluorination of Hexagonal Boron Nitride. Advanced Materials, 2021, 33, e2106084.	11,1	10
63	Toward hybrid Au nanorods @ M (Au, Ag, Pd and Pt) core–shell heterostructures for ultrasensitive SERS probes. Nanotechnology, 2017, 28, 245602.	1.3	9
64	Synthesis of surfactant-free Cuâ€"Pt dendritic heterostructures with highly electrocatalytic performance for methanol oxidation reaction. Materials Research Letters, 2016, 4, 212-218.	4.1	8
65	Bio-Inspired Growth of Silver Nanoparticles on 2D Material's Scaffolds as Heterostructures with Their Enhanced Antibacterial Property. Journal of Nanoscience and Nanotechnology, 2018, 18, 3893-3900.	0.9	8
66	Crystal-Phase Quantum Wires: One-Dimensional Heterostructures with Atomically Flat Interfaces. Nano Letters, 2018, 18, 247-254.	4.5	7
67	Magnetically Controllable Flowerlike, Polyhedral Ag–Cu–Co3O4 for Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2021, 13, 57814-57821.	4.0	7
68	Interfacial Superconductivity Achieved in Parent AEFe ₂ As ₂ (AE = Ca, Sr, Ba) by a Simple and Realistic Annealing Route. Nano Letters, 2021, 21, 2191-2198.	4.5	5
69	Toward heterostructured transition metal hybrids with highly promoted electrochemical hydrogen evolution. RSC Advances, 2019, 9, 19924-19929.	1.7	4
70	Oxygenation of Diamond Surfaces via Hummer's Method. Chemistry of Materials, 2021, 33, 4977-4987.	3.2	4
71	Modified Nickel-Rich Cathodes via Conformal Nanoparticle Coating of Precursors Using a Single Reactor Process. ACS Applied Energy Materials, 2021, 4, 14618-14627.	2.5	3
72	Quantitative in-situ study of strength-governed interfacial failure between h-BN and polymer-derived ceramic. Acta Materialia, 2021, 210, 116832.	3.8	2

#	Article	IF	CITATIONS
73	Simple in situ functionalization of carbon nanospheres. Nanotechnology, 2021, 32, 085602.	1.3	2
74	How surface tension matters in polymer-free graphene transfer. Oxford Open Materials Science, 2020, 1, .	0.5	0