Himanshu Sekhar Jena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5205129/publications.pdf

Version: 2024-02-01

73 2,896 29 52
papers citations h-index g-index

80 80 80 3424 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Strongly Reducing (Diarylamino)benzene-Based Covalent Organic Framework for Metal-Free Visible Light Photocatalytic H ₂ O ₂ Generation. Journal of the American Chemical Society, 2020, 142, 20107-20116.	13.7	239
2	Stable Multiresponsive Luminescent MOF for Colorimetric Detection of Small Molecules in Selective and Reversible Manner. Chemistry of Materials, 2015, 27, 5349-5360.	6.7	227
3	Engineering a Highly Defective Stable UiO-66 with Tunable Lewis-BrÃ,nsted Acidity: The Role of the Hemilabile Linker. Journal of the American Chemical Society, 2020, 142, 3174-3183.	13.7	156
4	Covalent triazine frameworks – a sustainable perspective. Green Chemistry, 2020, 22, 1038-1071.	9.0	138
5	Two Isostructural 3D Lanthanide Coordination Networks (Ln = Gd ³⁺ , Dy ³⁺) with Squashed Cuboid-Type Nanoscopic Cages Showing Significant Cryogenic Magnetic Refrigeration and Slow Magnetic Relaxation. Inorganic Chemistry, 2014, 53, 3926-3928.	4.0	108
6	A fluorine-containing hydrophobic covalent triazine framework with excellent selective CO ₂ capture performance. Journal of Materials Chemistry A, 2018, 6, 6370-6375.	10.3	105
7	Lanthanide-Directed Fabrication of Four Tetranuclear Quadruple Stranded Helicates Showing Magnetic Refrigeration and Slow Magnetic Relaxation. Inorganic Chemistry, 2016, 55, 5237-5244.	4.0	104
8	Synthesis and Characterization of Two Lanthanide (Gd ³⁺ and Dy ³⁺)-Based Three-Dimensional Metal Organic Frameworks with Squashed Metallomacrocycle Type Building Blocks and Their Magnetic, Sorption, and Fluorescence Properties Study. Crystal Growth and Design, 2014, 14, 1287-1295.	3.0	93
9	Triggering White-Light Emission in a 2D Imine Covalent Organic Framework Through Lanthanide Augmentation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27343-27352.	8.0	90
10	Generating Catalytic Sites in UiO-66 through Defect Engineering. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60715-60735.	8.0	86
11	Acetylacetone Covalent Triazine Framework: An Efficient Carbon Capture and Storage Material and a Highly Stable Heterogeneous Catalyst. Chemistry of Materials, 2018, 30, 4102-4111.	6.7	78
12	Tuning CO ₂ Uptake and Reversible Iodine Adsorption in Two Isoreticular MOFs through Ligand Functionalization. Chemistry - an Asian Journal, 2015, 10, 653-660.	3.3	66
13	l-proline modulated zirconium metal organic frameworks: Simple chiral catalysts for the aldol addition reaction. Journal of Catalysis, 2018, 365, 36-42.	6.2	65
14	Phosphonate Based High Nuclearity Magnetic Cages. Accounts of Chemical Research, 2016, 49, 1093-1103.	15.6	62
15	Lanthanide based coordination polymers chill, relax under magnetic field and also fluoresce. Dalton Transactions, 2013, 42, 9813.	3.3	55
16	Synthesis and Characterization of Two Discrete Ln ₁₀ Nanoscopic Ladderâ€Type Cages: Magnetic Studies Reveal a Significant Cryogenic Magnetocaloric Effect and Slow Magnetic Relaxation. Chemistry - an Asian Journal, 2014, 9, 1083-1090.	3.3	50
17	A 3D Iron(II)-Based MOF with Squashed Cuboctahedral Nanoscopic Cages Showing Spin-Canted Long-Range Antiferromagnetic Ordering. Inorganic Chemistry, 2013, 52, 12064-12069.	4.0	48
18	High Nuclearity (Octa-, Dodeca-, and Pentadecanuclear) Metal (M = Co ^{II} , Ni ^{II}) Phosphonate Cages: Synthesis, Structure, and Magnetic Behavior. Inorganic Chemistry, 2014, 53, 1606-1613.	4.0	48

#	Article	IF	Citations
19	Exploration of Structural Topologies in Metal–Organic Frameworks Based on 3-(4-Carboxyphenyl)propionic Acid, Their Synthesis, Sorption, and Luminescent Property Studies. Crystal Growth and Design, 2014, 14, 2022-2033.	3.0	46
20	A copper based pillared-bilayer metal organic framework: its synthesis, sorption properties and catalytic performance. Dalton Transactions, 2014, 43, 7191-7199.	3.3	43
21	Creation of Exclusive Artificial Cluster Defects by Selective Metal Removal in the (Zn, Zr) Mixed-Metal UiO-66. Journal of the American Chemical Society, 2021, 143, 21511-21518.	13.7	40
22	Amine-containing (nano-) Periodic Mesoporous Organosilica and its application in catalysis, sorption and luminescence. Microporous and Mesoporous Materials, 2020, 291, 109687.	4.4	39
23	Luminescent Ratiometric Thermometers Based on a 4f–3d Grafted Covalent Organic Framework to Locally Measure Temperature Gradients During Catalytic Reactions. Angewandte Chemie - International Edition, 2021, 60, 3727-3736.	13.8	39
24	Protonâ€Conducting Magnetic Coordination Polymers. Chemistry - A European Journal, 2015, 21, 13793-13801.	3.3	38
25	Study of Heterogeneous Catalysis by Iron-Squarate based 3D Metal Organic Framework for the Transformation of Tetrazines to Oxadiazole derivatives. Inorganic Chemistry, 2014, 53, 7071-7073.	4.0	37
26	Illustrating the Role of Quaternary-N of BINOL Covalent Triazine-Based Frameworks in Oxygen Reduction and Hydrogen Evolution Reactions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 44689-44699.	8.0	37
27	White Light Emission Properties of Defect Engineered Metal–Organic Frameworks by Encapsulation of Eu ³⁺ and Tb ³⁺ . Crystal Growth and Design, 2019, 19, 6339-6350.	3.0	35
28	Chlorideâ€Bridged Dinuclear Rhodium(III) Complexes Bearing Chiral Diphosphine Ligands: Catalyst Precursors for Asymmetric Hydrogenation of Simple Olefins. Angewandte Chemie - International Edition, 2016, 55, 8299-8303.	13.8	32
29	An Unprecedented Octadecanuclear Copper(II) Pyrazolate–Phosphonate Nanocage: Synthetic, Structural, Magnetic, and Mechanistic Study. Inorganic Chemistry, 2013, 52, 9717-9719.	4.0	31
30	Synthesis, characterisation, water adsorption and proton conductivity of three Cd(ii) based luminescent metal–organic frameworks. Inorganic Chemistry Frontiers, 2014, 1, 611-620.	6.0	31
31	Palladium catalyzed, heteroatom-guided C–H functionalization in the synthesis of substituted isoquinolines and dihydroisoquinolines. Chemical Communications, 2014, 50, 7322.	4.1	31
32	An anionic metal-organic framework as a platform for charge-and size-dependent selective removal of cationic dyes. Dyes and Pigments, 2018, 156, 332-337.	3.7	31
33	An aliphatic hexene-covalent triazine framework for selective acetylene/methane and ethylene/methane separation. Journal of Materials Chemistry A, 2019, 7, 13188-13196.	10.3	30
34	Effect of non-covalent interaction on the diastereoselective self-assembly of Cu(<scp>ii</scp>) complexes containing a racemic Schiff base in a chiral self-discriminating process. New Journal of Chemistry, 2014, 38, 2486-2499.	2.8	29
35	Conversion of 2-(aminomethyl) substituted pyridine and quinoline to their dicarbonyldiimides using copper(II) acetate. Inorganica Chimica Acta, 2010, 363, 1448-1454.	2.4	28
36	Novel synthesis of 2,4-bis(2-pyridyl)-5-(pyridyl)imidazoles and formation of N-(3-(pyridyl)imidazo[1,5-a]pyridine)picolinamidines: nitrogen-rich ligands. Tetrahedron Letters, 2009, 50, 6264-6267.	1.4	27

#	Article	lF	Citations
37	A family of Fe ³⁺ based double-stranded helicates showing a magnetocaloric effect, and Rhodamine B dye and DNA binding activities. Dalton Transactions, 2015, 44, 15531-15543.	3.3	27
38	Polar protic solvent-trapping polymorphism of the Hg ^{II} -hydrazone coordination polymer: experimental and theoretical findings. CrystEngComm, 2017, 19, 3017-3025.	2.6	27
39	A 2D coordination polymer based on Co3-SBU showing spin-canting ferromagnetic behaviour. RSC Advances, 2013, 3, 25237.	3.6	25
40	Effect of Building Block Transformation in Covalent Triazineâ€Based Frameworks for Enhanced CO 2 Uptake and Metalâ€Free Heterogeneous Catalysis. Chemistry - A European Journal, 2020, 26, 1548-1557.	3.3	23
41	Flexible luminescent non-lanthanide metal–organic frameworks as small molecules sensors. Dalton Transactions, 2021, 50, 14513-14531.	3.3	22
42	Hybrid Nanocomposites Formed by Lanthanide Nanoparticles in Zr-MOF for Local Temperature Measurements during Catalytic Reactions. Chemistry of Materials, 2021, 33, 8007-8017.	6.7	22
43	Diastereoselective self-assembly of heterochiral Zn(<scp>ii</scp>) complexes of racemic Schiff bases in a chiral self-discriminating process: effect of non-covalent interactions on solid state structural self-assembly. RSC Advances, 2014, 4, 3028-3044.	3.6	21
44	Functionalized periodic mesoporous organosilicas: from metal free catalysis to sensing. Journal of Materials Chemistry A, 2019, 7, 14060-14069.	10.3	21
45	A family of three magnetic metal organic frameworks: their synthesis, structural, magnetic and vapour adsorption study. CrystEngComm, 2014, 16, 4742-4752.	2.6	20
46	Molecular structures of dinuclear zinc(II) complexes of chiral tridentate imine and amine ligands: Effect of ligand geometry on diastereoselectivity. Inorganica Chimica Acta, 2013, 394, 210-219.	2.4	18
47	Europiumâ€Based Dinuclear Tripleâ€Stranded Helicate vs. Tetranuclear Quadrupleâ€Stranded Helicate: Effect of Stoichiometric Ratio on the Supramolecular Selfâ€Assembly. European Journal of Inorganic Chemistry, 2015, 2015, 2901-2907.	2.0	18
48	Heteroatomâ€Guided, Palladiumâ€Catalyzed, Siteâ€Selective CH Arylation of 4 <i>H</i> à€Chromenes: Diastereoselective Assembly of the Core Structure of Myristininâ€B through Dual CH Functionalization. Chemistry - A European Journal, 2015, 21, 9905-9911.	3.3	16
49	Molecular structures of nickel(II) monochelates of a racemic tridentate ligand and co-ligand induced structural variations. Inorganica Chimica Acta, 2011, 365, 177-182.	2.4	15
50	O6-Methylguanine Repair by O6-Alkylguanine-DNA Alkyltransferase. Journal of Physical Chemistry B, 2009, 113, 16285-16290.	2.6	14
51	Effect of cooperative non-covalent interactions on the solid state heterochiral self-assembly: The concepts of isotactic and syndiotactic arrangements in coordination complex. Inorganica Chimica Acta, 2014, 410, 156-170.	2.4	14
52	Upconverting Er ³⁺ –Yb ³⁺ Inorganic/Covalent Organic Framework Core–Shell Nanoplatforms for Simultaneous Catalysis and Nanothermometry. ACS Applied Materials & Eamp; Interfaces, 2021, 13, 47010-47018.	8.0	14
53	Luminescent Ratiometric Thermometers Based on a 4f–3d Grafted Covalent Organic Framework to Locally Measure Temperature Gradients During Catalytic Reactions. Angewandte Chemie, 2021, 133, 3771-3780.	2.0	12
54	Lanthanide based inorganic phosphates and biological nucleotides sensor. Coordination Chemistry Reviews, 2022, 466, 214583.	18.8	12

#	Article	IF	CITATIONS
55	Halide ion-driven self-assembly of Zn(<scp>ii</scp>) compounds derived from an asymmetrical hydrazone building block: a combined experimental and theoretical study. New Journal of Chemistry, 2016, 40, 10116-10126.	2.8	11
56	Stable Cu(I) Complexes with Thioamidoguanidine Possessing Halide-Bridge Structure. Inorganic Chemistry, 2012, 51 , $10800-10807$.	4.0	10
57	Diastereoselectivity in dinuclear complexes of chiral tridentate ligands. Inorganica Chimica Acta, 2012, 390, 154-162.	2.4	10
58	Formation of Imidazolidine-benzothiazole–Copper(II) Complexes via a Copper-Mediated Room-Temperature C–H Activation of Imidazolidinecarbothioamides. Synthesis, 2014, 46, 1886-1900.	2.3	10
59	Chlorideâ€Bridged Dinuclear Rhodium(III) Complexes Bearing Chiral Diphosphine Ligands: Catalyst Precursors for Asymmetric Hydrogenation of Simple Olefins. Angewandte Chemie, 2016, 128, 8439-8443.	2.0	10
60	Structural versatility of the quasi-aromatic Möbius type zinc(ii)-pseudohalide complexes – experimental and theoretical investigations. RSC Advances, 2019, 9, 23764-23773.	3.6	10
61	A perception of ferro- and antiferromagnetic interactions in a two dimensional Ni(<scp>ii</scp>) heterochiral coordination polymer showing unusual CO ₂ uptake behavior. Dalton Transactions, 2014, 43, 16996-16999.	3.3	6
62	Sensing of Phosphate and ATP by Lanthanide Complexes in Aqueous Medium and Its Application on Living Cells. ChemistrySelect, 2020, 5, 12878-12884.	1.5	6
63	Effect of steric congestion and non-covalent interaction on the self-organization of two isostructural 1D chiral coordination polymers. Inorganica Chimica Acta, 2014, 421, 52-58.	2.4	5
64	Emergence of Metallic Conductivity in Ordered One-Dimensional Coordination Polymer Thin Films upon Reductive Doping. ACS Applied Materials & Samp; Interfaces, 2021, 13, 10249-10256.	8.0	5
65	Rigid Nanoporous Urea-Based Covalent Triazine Frameworks for C2/C1 and CO2/CH4 Gas Separation. Molecules, 2021, 26, 3670.	3.8	5
66	Role of Lewis Acid Metal Centers in Metal–Organic Frameworks for Ultrafast Reduction of 4-Nitrophenol. Catalysts, 2022, 12, 494.	3.5	5
67	Copper(II) acetate mediated conversion of ortho aminomethyl substituted isoquinolines to bis(isoquinolylcarbonyl)amides. Polyhedron, 2012, 33, 9-12.	2.2	4
68	Hydrothermal Synthesis, Characterization and Gas Adsorption Study of a Zn(II) Based 1D Coordination Polymer. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2014, 84, 213-219.	1.2	4
69	Mechanistic Insight of Sensing Hydrogen Phosphate in Aqueous Medium by Using Lanthanide(III)-Based Luminescent Probes. Nanomaterials, 2021, 11, 53.	4.1	4
70	Co3Gd4 Cage as Magnetic Refrigerant and Co3Dy3 Cage Showing Slow Relaxation of Magnetisation. Molecules, 2022, 27, 1130.	3.8	4
71	STRUCTURAL AND MAGNETIC PROPERTIES OF NANOCRYSTALLINE Sn0.98Co0.02O2 UNDER DIFFERENT ANNEALING CONDITIONS. International Journal of Nanoscience, 2011, 10, 313-317.	0.7	0
72	Innentitelbild: Chlorideâ€Bridged Dinuclear Rhodium(III) Complexes Bearing Chiral Diphosphine Ligands: Catalyst Precursors for Asymmetric Hydrogenation of Simple Olefins (Angew. Chem. 29/2016). Angewandte Chemie, 2016, 128, 8270-8270.	2.0	0

#	Article	IF	CITATIONS
73	Effect of Building Block Transformation in Covalent Triazineâ€Based Frameworks for Enhanced CO 2 Uptake and Metalâ€Free Heterogeneous Catalysis. Chemistry - A European Journal, 2020, 26, 1441-1441.	3.3	O