
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5204398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roles of proximal ligand in heme proteins: replacement of proximal histidine of human myoglobin with cysteine and tyrosine by site-directed mutagenesis as models for P-450, chloroperoxidase, and catalase. Biochemistry, 1993, 32, 241-252.	1.2	257
2	Conformational landscape of cytochrome c folding studied by microsecond-resolved small-angle x-ray scattering. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1329-1334.	3.3	244
3	Identification of the ubiquitin–protein ligase that recognizes oxidized IRP2. Nature Cell Biology, 2003, 5, 336-340.	4.6	176
4	Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nature Communications, 2016, 7, 11030.	5.8	153
5	Collapse and search dynamics of apomyoglobin folding revealed by submillisecond observations of Â-helical content and compactness. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1171-1176.	3.3	150
6	Stepwise formation of alpha-helices during cytochrome c folding. Nature Structural Biology, 2000, 7, 514-520.	9.7	140
7	Involvement of Heme Regulatory Motif in Heme-Mediated Ubiquitination and Degradation of IRP2. Molecular Cell, 2005, 19, 171-181.	4.5	135
8	Roles of the axial push effect in cytochrome P450cam studied with the site-directed mutagenesis at the heme proximal site. Journal of Inorganic Biochemistry, 2000, 81, 141-151.	1.5	120
9	Roles of the Proximal Hydrogen Bonding Network in Cytochrome P450cam-Catalyzed Oxygenation. Journal of the American Chemical Society, 2002, 124, 14571-14579.	6.6	100
10	Catalytic Roles of the Distal Site Asparagineâ^'Histidine Couple in Peroxidasesâ€. Biochemistry, 1996, 35, 14251-14258.	1.2	94
11	Specific collapse followed by slow hydrogen-bond formation of Â-sheet in the folding of single-chain monellin. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2748-2753.	3.3	91
12	Hierarchical folding mechanism of apomyoglobin revealed by ultra-fast H/D exchange coupled with 2D NMR. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13859-13864.	3.3	89
13	Effects of Concerted Hydrogen Bonding of Distal Histidine on Active Site Structures of Horseradish Peroxidase. Resonance Raman Studies with Asn70 Mutants. Journal of the American Chemical Society, 1997, 119, 1758-1766.	6.6	81
14	Alteration of human myoglobin proximal histidine to cysteine or tyrosine by site-directed mutagenesis: Characterization and their catalytic activities. Biochemical and Biophysical Research Communications, 1991, 180, 138-144.	1.0	80
15	Catalytic Activities and Structural Properties of Horseradish Peroxidase Distal His42 → Glu or Gln Mutantâ€. Biochemistry, 1997, 36, 9889-9898.	1.2	80
16	Two Heme Binding Sites Are Involved in the Regulated Degradation of the Bacterial Iron Response Regulator (Irr) Protein. Journal of Biological Chemistry, 2005, 280, 7671-7676.	1.6	74
17	Direct electron transfer catalysed by recombinant forms of horseradish peroxidase: insight into the mechanism. Electrochemistry Communications, 1999, 1, 171-175.	2.3	70
18	Preparation and Reactions of Myoglobin Mutants Bearing both Proximal Cysteine Ligand and Hydrophobic Distal Cavity: Protein Models for the Active Site of P-450â€. Biochemistry, 1996, 35, 13118-13124.	1.2	69

#	Article	IF	CITATIONS
19	Identification of Histidine 77 as the Axial Heme Ligand of Carbonmonoxy CooA by Picosecond Time-Resolved Resonance Raman Spectroscopy. Biochemistry, 2000, 39, 12747-12752.	1.2	65
20	Cerebral oxygen utilization analyzed by the use of oxygen-17 and its nuclear magnetic resonance. Biochemical and Biophysical Research Communications, 1990, 169, 153-158.	1.0	59
21	Heme-Binding Characteristics of the Isolated PAS-A Domain of Mouse Per2, a Transcriptional Regulatory Factor Associated with Circadian Rhythms. Biochemistry, 2008, 47, 6157-6168.	1.2	57
22	A Dye-Decolorizing Peroxidase from <i>Vibrio cholerae</i> . Biochemistry, 2015, 54, 6610-6621.	1.2	56
23	Time-resolved Small-angle X-ray Scattering Investigation of the Folding Dynamics of Heme Oxygenase: Implication of the Scaling Relationship for the Submillisecond Intermediates of Protein Folding. Journal of Molecular Biology, 2006, 357, 997-1008.	2.0	55
24	Site-directed mutagenesis in hemoglobin: functional and structural role of inter- and intrasubunit hydrogen bonds as studied with 37.beta. and 145.beta. mutations. Biochemistry, 1992, 31, 3256-3264.	1.2	54
25	Proximal cysteine residue is essential for the enzymatic activities of cytochrome P450cam. FEBS Journal, 2001, 268, 252-259.	0.2	54
26	Activation of Hydrogen Peroxide in Horseradish Peroxidase Occurs within â^1⁄4200Î1⁄4s Observed by a New Freeze-Quench Device. Biophysical Journal, 2003, 84, 1998-2004.	0.2	54
27	Crystal Structure of the Cytochrome P450cam Mutant That Exhibits the Same Spectral Perturbations Induced by Putidaredoxin Binding. Journal of Biological Chemistry, 2004, 279, 42844-42849.	1.6	54
28	L358P Mutation on Cytochrome P450cam Simulates Structural Changes upon Putidaredoxin Binding. Journal of Biological Chemistry, 2004, 279, 42836-42843.	1.6	53
29	Site-directed mutagenesis in haemoglobin. Journal of Molecular Biology, 1991, 218, 769-778.	2.0	52
30	Oligomerization of a molecular chaperone modulates its activity. ELife, 2018, 7, .	2.8	51
31	Heme Environmental Structure of CooA Is Modulated by the Target DNA Binding. Journal of Biological Chemistry, 1998, 273, 19988-19992.	1.6	50
32	Binding of CO at the Pro2 Side Is Crucial for the Activation of CO-sensing Transcriptional Activator CooA. Journal of Biological Chemistry, 2001, 276, 11473-11476.	1.6	50
33	Direct Observation of the Multistep Helix Formation of Poly-l-glutamic Acids. Journal of the American Chemical Society, 2002, 124, 11596-11597.	6.6	50
34	NMR basis for interprotein electron transfer gating between cytochrome <i>c</i> and cytochrome <i>c</i> oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12271-12276.	3.3	50
35	Molecular oxygen regulates the enzymatic activity of a heme-containing diguanylate cyclase (HemDGC) for the synthesis of cyclic di-GMP. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 166-172.	1.1	48
36	NMR Study on the Structural Changes of Cytochrome P450cam upon the Complex Formation with Putidaredoxin. Journal of Biological Chemistry, 2003, 278, 39809-39821.	1.6	46

#	Article	IF	CITATIONS
37	Molecular Basis of Guanine Nucleotide Dissociation Inhibitor Activity of Human Neuroglobin by Chemical Cross-linking and Mass Spectrometry. Journal of Molecular Biology, 2007, 368, 150-160.	2.0	46
38	Hydrogen Bond Network in the Distal Site of Peroxidases: Spectroscopic Properties of Asn70 → Asp Horseradish Peroxidase Mutantâ€. Biochemistry, 1997, 36, 9791-9798.	1.2	44
39	Optical manipulation of proteins in aqueous solution. Applied Surface Science, 2009, 255, 9906-9908.	3.1	44
40	Specifically Collapsed Intermediate in the Early Stage of the Folding of Ribonuclease A. Journal of Molecular Biology, 2005, 350, 349-362.	2.0	43
41	Identification and Functional and Spectral Characterization of a Globin-coupled Histidine Kinase from Anaeromyxobacter sp. Fw109-5. Journal of Biological Chemistry, 2011, 286, 35522-35534.	1.6	43
42	Conformational Disorder of the Most Immature Cu, Zn-Superoxide Dismutase Leading to Amyotrophic Lateral Sclerosis. Journal of Biological Chemistry, 2016, 291, 4144-4155.	1.6	42
43	Detection of a Tryptophan Radical as an Intermediate Species in the Reaction of Horseradish Peroxidase Mutant (Phe-221 → Trp) and Hydrogen Peroxide. Journal of Biological Chemistry, 1998, 273, 14753-14760.	1.6	40
44	Decreased intracellular free magnesium in erythrocytes of spontaneously hypertensive rats. Biochemical and Biophysical Research Communications, 1987, 143, 1012-1017.	1.0	39
45	The Effects of Heme Pocket Hydrophobicity on the Ligand Binding Dynamics in Myoglobin as Studied with Leucine 29 Mutants. Journal of Biological Chemistry, 1997, 272, 30108-30114.	1.6	39
46	Roles of negatively charged surface residues of putidaredoxin in interactions with redox partners in P450cam monooxygenase system. BBA - Proteins and Proteomics, 1998, 1386, 157-167.	2.1	39
47	lsothermal titration calorimetric studies on the associations of putidaredoxin to NADH-putidaredoxin reductase and P450cam. BBA - Proteins and Proteomics, 1998, 1384, 180-188.	2.1	38
48	Iron Hemiporphycene as a Functional Prosthetic Group for Myoglobin. Inorganic Chemistry, 2003, 42, 1456-1461.	1.9	38
49	Dehydration of main-chain amides in the final folding step of single-chain monellin revealed by time-resolved infrared spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13391-13396.	3.3	38
50	Unusual Heme Binding in the Bacterial Iron Response Regulator Protein: Spectral Characterization of Heme Binding to the Heme Regulatory Motif. Biochemistry, 2011, 50, 1016-1022.	1.2	38
51	Kinetic and Spectroscopic Characterization of a Hydroperoxy Compound in the Reaction of Native Myoglobin with Hydrogen Peroxide. Journal of Biological Chemistry, 2003, 278, 41597-41606.	1.6	35
52	Activation Mechanisms of Transcriptional Regulator CooA Revealed by Small-angle X-ray Scattering. Journal of Molecular Biology, 2004, 341, 651-668.	2.0	33
53	Structural Diversities of Active Site in Clinical Azole-bound Forms between Sterol 14α-Demethylases (CYP51s) from Human and Mycobacterium tuberculosis. Journal of Biological Chemistry, 2005, 280, 9088-9096.	1.6	33
54	A heme degradation enzyme, HutZ, from Vibrio cholerae. Chemical Communications, 2012, 48, 6741.	2.2	33

#	Article	IF	CITATIONS
55	Ligand Migration in Human Myoglobin: Steric Effects of Isoleucine 107(G8) on O2 and CO Binding. Biophysical Journal, 2001, 80, 1507-1517.	0.2	32
56	Structural Roles of the Highly Conserved Glu Residue in the Heme Distal Site of Peroxidasesâ€. Biochemistry, 1998, 37, 2629-2638.	1.2	31
57	C9orf72-derived arginine-rich poly-dipeptides impede phase modifiers. Nature Communications, 2021, 12, 5301.	5.8	31
58	Study of the specific heme orientation in reconstituted hemoglobins. Biochemistry, 1988, 27, 4747-4753.	1.2	30
59	Molecular Mechanism of the Electron Transfer Reaction in Cytochrome P450camâ^'Putidaredoxin: Roles of Glutamine 360 at the Heme Proximal Site. Biochemistry, 2002, 41, 13883-13893.	1.2	30
60	High-pressure laser photolysis study of hemoproteins. Effects of pressure on carbon monoxide binding dynamics for R- and T-state hemoglobins. Biochemistry, 1990, 29, 10199-10205.	1.2	28
61	Investigation of the redox-dependent modulation of structure and dynamics in human cytochrome c. Biochemical and Biophysical Research Communications, 2016, 469, 978-984.	1.0	27
62	High-Pressure Flash Photolysis Study of Hemoprotein: Effects of Substrate Analogs on the Recombination of Carbon Monoxide to Cytochrome P450CAM. Biochemistry, 1994, 33, 9762-9768.	1.2	26
63	Roles of valine-98 and glutamic acid-72 of putidaredoxin in the electron-transfer complexes with NADH-putidaredoxin reductase and P450cam. Inorganica Chimica Acta, 1998, 272, 80-88.	1.2	26
64	Electron Transfer Reactions in Zn-Substituted Cytochrome P450cam. Biochemistry, 2000, 39, 10996-11004.	1.2	26
65	Functions of Fluctuation in the Heme-Binding Loops of Cytochrome b5 Revealed in the Process of Heme Incorporation. Biochemistry, 2000, 39, 5961-5970.	1.2	25
66	Absence of a Detectable Intermediate in the Compound I Formation of Horseradish Peroxidase at Ambient Temperature*. Journal of Biological Chemistry, 2005, 280, 40934-40938.	1.6	24
67	Energetic Mechanism of Cytochrome c-Cytochrome c Oxidase Electron Transfer Complex Formation under Turnover Conditions Revealed by Mutational Effects and Docking Simulation. Journal of Biological Chemistry, 2016, 291, 15320-15331.	1.6	23
68	Cytoplasmic Heme-Binding Protein (HutX) from <i>Vibrio cholerae</i> Is an Intracellular Heme Transport Protein for the Heme-Degrading Enzyme, HutZ. Biochemistry, 2016, 55, 884-893.	1.2	23
69	Site-directed mutagenesis in hemoglobin: Functional and structural study of the intersubunit hydrogen bond of threonine-38(C3).alpha. at the .alpha.1beta.2 interface in human hemoglobin. Biochemistry, 1993, 32, 13688-13695.	1.2	22
70	Characterization of a Mutant RecA Protein that Facilitates Homologous Genetic Recombination but not Recombinational DNA Repair: RecA423. Journal of Molecular Biology, 1996, 264, 696-712.	2.0	22
71	Amorphous Aggregation of Cytochrome <i>c</i> with Inherently Low Amyloidogenicity Is Characterized by the Metastability of Supersaturation and the Phase Diagram. Langmuir, 2016, 32, 2010-2022.	1.6	22
72	The Distal Glutamic Acid as an Acid-Base Catalyst in the Distal Site of Horseradish Peroxidase. Biochemical and Biophysical Research Communications, 1996, 227, 393-399.	1.0	21

#	Article	IF	CITATIONS
73	Structural and functional roles of heme binding module in globin proteins: identification of the segment regulating the heme binding structure. Journal of Molecular Biology, 1998, 283, 311-327.	2.0	21
74	Protein oxidation mediated by heme-induced active site conversion specific for heme-regulated transcription factor, iron response regulator. Scientific Reports, 2016, 6, 18703.	1.6	21
75	Structural and Functional Roles of Modules in Hemoglobin. Journal of Biological Chemistry, 1997, 272, 30054-30060.	1.6	20
76	NMR studies of putidaredoxin: associations of putidaredoxin with NADH-putidaredoxin reductase and cytochrome P450cam. BBA - Proteins and Proteomics, 1998, 1386, 168-178.	2.1	20
77	Identification of Crucial Histidines for Heme Binding in the N-terminal Domain of the Heme-regulated eIF2α Kinase. Journal of Biological Chemistry, 2004, 279, 6778-6782.	1.6	20
78	Effects of the bHLH domain on axial coordination of heme in the PAS-A domain of neuronal PAS domain protein 2 (NPAS2): Conversion from His119/Cys170 coordination to His119/His171 coordination. Journal of Inorganic Biochemistry, 2012, 108, 188-195.	1.5	20
79	Sequence and Temperature Dependence of the End-to-End Collision Dynamics of Single-Stranded DNA. Biophysical Journal, 2013, 104, 2485-2492.	0.2	20
80	Structural insight into proline cis/trans isomerization of unfolded proteins catalyzed by the trigger factor chaperone. Journal of Biological Chemistry, 2018, 293, 15095-15106.	1.6	20
81	NMR study of hybrid hemoglobins containing unnatural heme: effect of heme modification on their tertiary and quaternary structures. Biochemistry, 1986, 25, 4892-4898.	1.2	19
82	Luminol Activity of Horseradish Peroxidase Mutants Mimicking a Proposed Binding Site for Luminol inArthromyces ramosusPeroxidaseâ€. Biochemistry, 1999, 38, 10463-10473.	1.2	19
83	Accelerating structural life science by paramagnetic lanthanide probe methods. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129332.	1.1	19
84	Site-Directed Mutagenesis in Hemoglobin: Functional and Structural Role of the Penultimate Tyrosine in the .alpha. Subunit. Biochemistry, 1994, 33, 2546-2553.	1.2	18
85	Pressure Effects on Electron Transfer Rates in Zinc/Ruthenium Modified Myoglobins. Journal of the American Chemical Society, 1997, 119, 9582-9583.	6.6	18
86	Investigation of the Electron-Transfer Mechanism by Cross-Linking between Zn-substituted Myoglobin and Cytochromeb5. Journal of the American Chemical Society, 2002, 124, 4008-4019.	6.6	18
87	Pressure effects on carbon monoxide rebinding to the isolated .alpha. and .beta. chains of human hemoglobin. Biochemistry, 1991, 30, 10679-10685.	1.2	17
88	Pressure Dependence of the Intramolecular Electron Transfer Reaction in Myoglobin Reinvestigated. Journal of Physical Chemistry B, 2000, 104, 1817-1825.	1.2	17
89	Ruthenium-iron hybrid hemoglobins as a model for partially liganded hemoglobin: NMR studies of their tertiary and quaternary structures. Biochemistry, 1988, 27, 4060-4066.	1.2	16
90	Effects of the Intramolecular Disulfide Bond on Ligand Binding Dynamics in Myoglobin. Biochemistry, 1997, 36, 324-332.	1.2	16

KOICHIRO ISHIMORI

#	Article	IF	CITATIONS
91	â€~Module'-substituted globins: Artificial exon shuffling among myoglobin, hemoglobin α- and β-subunits. Biophysical Chemistry, 1997, 68, 265-273.	1.5	16
92	Unique Heme Environmental Structures in Heme-regulated Proteins Using Heme as the Signaling Molecule. Chemistry Letters, 2014, 43, 1680-1689.	0.7	16
93	Functional cooperativity between the trigger factor chaperone and the ClpXP proteolytic complex. Nature Communications, 2021, 12, 281.	5.8	16
94	NO-Induced Activation Mechanism of the Heme-Regulated eIF2α Kinase. Journal of the American Chemical Society, 2002, 124, 13696-13697.	6.6	15
95	Redox-controlled backbone dynamics of human cytochrome c revealed by 15N NMR relaxation measurements. Biochemical and Biophysical Research Communications, 2010, 398, 231-236.	1.0	15
96	Heme Binding to Porphobilinogen Deaminase from <i>Vibrio cholerae</i> Decelerates the Formation of 1-Hydroxymethylbilane. ACS Chemical Biology, 2018, 13, 750-760.	1.6	15
97	Dehydration in the Folding of Reduced CytochromecRevealed by the Electron-Transfer-Triggered Folding under High Pressure. Journal of the American Chemical Society, 2006, 128, 670-671.	6.6	14
98	Effects of intra- and intersubunit hydrogen bonds on the R-T transition in human hemoglobin as studied with .alpha.42(C7) and .beta.145(HC2) mutations. Biochemistry, 1993, 32, 10165-10169.	1.2	13
99	Structural and Functional Effects of Pseudo-module Substitution in Hemoglobin Subunits. Journal of Biological Chemistry, 1998, 273, 8080-8087.	1.6	13
100	Reaction intermediates in the heme degradation reaction by HutZ from Vibrio cholerae. Dalton Transactions, 2017, 46, 8104-8109.	1.6	13
101	Spectroscopic studies on HasA from Yersinia pseudotuberculosis. Journal of Inorganic Biochemistry, 2014, 138, 31-38.	1.5	12
102	Redox-Dependent Dynamics in Heme-Bound Bacterial Iron Response Regulator (Irr) Protein. Biochemistry, 2016, 55, 4047-4054.	1.2	12
103	Dual role of the active-center cysteine in human peroxiredoxin 1: Peroxidase activity and heme binding. Biochemical and Biophysical Research Communications, 2017, 483, 930-935.	1.0	12
104	Specific heme binding to heme regulatory motifs in iron regulatory proteins and its functional significance. Journal of Inorganic Biochemistry, 2019, 198, 110726.	1.5	12
105	Structural and functional characterization of "laboratory evolved―cytochrome P450cam mutants showing enhanced naphthalene oxygenation activity. Biochemical and Biophysical Research Communications, 2004, 323, 1209-1215.	1.0	11
106	Molecular Mechanism for Heme-Mediated Inhibition of 5-Aminolevulinic Acid Synthase 1. Bulletin of the Chemical Society of Japan, 2014, 87, 997-1004.	2.0	11
107	Oscillatory growth for twisting crystals. Chemical Communications, 2015, 51, 8516-8519.	2.2	11
108	Heme Proximal Hydrogen Bonding between His170 and Asp132 Plays an Essential Role in the Heme Degradation Reaction of HutZ from <i>Vibrio cholerae</i> . Biochemistry, 2017, 56, 2723-2734.	1.2	11

KOICHIRO ISHIMORI

#	Article	IF	CITATIONS
109	Oxidation-State-Dependent Protein Docking between Cytochromecand Cytochromeb5:Â High-Pressure Laser Flash Photolysis Studyâ€. Biochemistry, 2002, 41, 9824-9832.	1.2	10
110	Electron Transfer Reaction in a Single Protein Molecule Observed by Total Internal Reflection Fluorescence Microscopy. Journal of the American Chemical Society, 2005, 127, 2098-2103.	6.6	10
111	HmuS from Yersinia pseudotuberculosis is a non-canonical heme-degrading enzyme to acquire iron from heme. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1870-1878.	1.1	10
112	The Iron Chaperone Protein CyaY from <i>Vibrio cholerae</i> Is a Heme-Binding Protein. Biochemistry, 2017, 56, 2425-2434.	1.2	10
113	Redox-dependent axial ligand replacement and its functional significance in heme-bound iron regulatory proteins. Journal of Inorganic Biochemistry, 2018, 182, 238-248.	1.5	9
114	Ruthenium-iron hybrid hemoglobins as a model for partially liganded hemoglobin: oxygen equilibrium curves and resonance Raman spectra. Biochemistry, 1989, 28, 8603-8609.	1.2	8
115	Substitution of the Heme Binding Module in Hemoglobin α- and β-Subunits. Journal of Biological Chemistry, 2000, 275, 12438-12445.	1.6	8
116	Unique Peroxidase Reaction Mechanism in Prostaglandin Endoperoxide H Synthase-2. Journal of Biological Chemistry, 2007, 282, 16681-16690.	1.6	8
117	Structural Characterization of Heme Environmental Mutants of CgHmuT that Shuttles Heme Molecules to Heme Transporters. International Journal of Molecular Sciences, 2016, 17, 829.	1.8	8
118	Iron chelators inhibit the heme-degradation reaction by HutZ from Vibrio cholerae. Dalton Transactions, 2017, 46, 5147-5150.	1.6	8
119	Quantitative description and classification of protein structures by a novel robust amino acid network: interaction selective network (ISN). Scientific Reports, 2019, 9, .	1.6	8
120	Mechanistic insights into heme-mediated transcriptional regulation via a bacterial manganese-binding iron regulator, iron response regulator (Irr). Journal of Biological Chemistry, 2020, 295, 11316-11325.	1.6	8
121	Unusual Pressure Effects on Ligand Rebinding to the Human Myoglobin Leucine 29 Mutants. Journal of Biological Chemistry, 2000, 275, 30309-30316.	1.6	7
122	Subunit–subunit interactions play a key role in the heme-degradation reaction of HutZ from <i>Vibrio cholerae</i> . Dalton Transactions, 2019, 48, 3973-3983.	1.6	7
123	Structureactivity relation of horseradish peroxidases as studied with mutations at heme distal and proximal sites. Pure and Applied Chemistry, 1998, 70, 911-916.	0.9	7
124	Crystal structure of a protein with an artificial exon-shuffling, module M4-substituted chimera hemoglobin βα, at 2.5 à resolution 1 1Edited by K. Nagei. Journal of Molecular Biology, 1999, 287, 369-382.	2.0	6
125	NMR studies of recombinant cytochrome P450cam mutants. Biochimie, 1996, 78, 763-770.	1.3	5
126	The artificial α1β1-contact mutant hemoglobin, Hb Phe-35β, shows only small functional abnormalities. FEBS Letters, 1998, 441, 93-96.	1.3	5

#	Article	IF	CITATIONS
127	Conversion of an Electron-Transfer Protein into an Oxygen Binding Protein:Â The Axial Cytochromeb5Mutant with an Unusually High O2Affinity. Journal of the American Chemical Society, 2000, 122, 11535-11536.	6.6	5
128	Dioxygen Reduction bybo-Type Quinol Oxidase fromEscherichia coliStudied by Submillisecond-Resolved Freezeâ^'Quench EPR Spectroscopyâ€. Biochemistry, 2004, 43, 2288-2296.	1.2	5
129	Energetic basis on interactions between ferredoxin and ferredoxin NADP + reductase at varying physiological conditions. Biochemical and Biophysical Research Communications, 2017, 482, 909-915.	1.0	5
130	Complete Genome Sequence of Staphylococcus arlettae Strain P2, Isolated from a Laboratory Environment. Microbiology Resource Announcements, 2019, 8, .	0.3	5
131	Structural basis for the heme transfer reaction in heme uptake machinery from Corynebacteria. Chemical Communications, 2019, 55, 13864-13867.	2.2	5
132	Radical transfer but not heme distal residues is essential for pH dependence of dye-decolorizing activity of peroxidase from Vibrio cholerae. Journal of Inorganic Biochemistry, 2021, 219, 111422.	1.5	5
133	Uncovering dehydration in cytochrome <i>c</i> refolding from urea- and guanidine hydrochloride-denatured unfolded state by high pressure spectroscopy. Biophysics and Physicobiology, 2019, 16, 18-27.	0.5	5
134	Steric effects of isoleucine 107 on heme reorientation reaction in human myoglobin. Biochemical and Biophysical Research Communications, 2004, 324, 1095-1100.	1.0	4
135	Probing phenylalanine environments in oligomeric structures with pentafluorophenylalanine and cyclohexylalanine. Biopolymers, 2011, 95, 410-419.	1.2	4
136	Polyethylene glycol promotes autoxidation of cytochrome c. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1339-1349.	1.1	4
137	Regulation of the expression of the nickel uptake system in Vibrio cholerae by iron and heme via ferric uptake regulator (Fur). Journal of Inorganic Biochemistry, 2022, 228, 111713.	1.5	4
138	Biophysical research in Hokkaido University, Japan. Biophysical Reviews, 2020, 12, 233-236.	1.5	3
139	Osmotic pressure effects identify dehydration upon cytochrome c–cytochrome c oxidase complex formation contributing to a specific electron pathway formation. Biochemical Journal, 2020, 477, 1565-1578.	1.7	3
140	Zinc-Dependent Oligomerization of Thermus thermophilus Trigger Factor Chaperone. Biology, 2021, 10, 1106.	1.3	3
141	Interaction of fully liganded valency hybrid hemoglobin with inositol hexaphosphate. Implication of the IHP-induced T state of human adult methemoglobin in the low-spin state. Biochemistry, 1986, 25, 7243-7250.	1.2	2
142	Design, construction, crystallization, and preliminary X-ray studies of a fine-tuning mutant (F133V) of module-substituted chimera hemoglobin. , 1998, 32, 263-267.		2
143	Heme-Binding Properties of HupD Functioning as a Substrate-Binding Protein in a Heme-Uptake ABC-Transporter System in <i>Listeria monocytogenes</i> . Bulletin of the Chemical Society of Japan, 2014, 87, 1140-1146.	2.0	2
144	Heme Iron Coordination Structure of Heme Transport Protein HutB from <i>Vibrio Cholerae</i> . Bulletin of the Chemical Society of Japan, 2017, 90, 924-930.	2.0	2

KOICHIRO ISHIMORI

#	ARTICLE	IF	CITATIONS
145	Role of His63 in HutZ from <i>Vibrio cholerae</i> in the heme degradation reaction and heme binding. Dalton Transactions, 2019, 48, 5408-5416.	1.6	2
146	Role of conserved arginine in the heme distal site of HutZ from Vibrio cholerae in the heme degradation reaction. Archives of Biochemistry and Biophysics, 2019, 677, 108165.	1.4	2
147	Structural and Kinetic Views of Molecular Chaperones in Multidomain Protein Folding. International Journal of Molecular Sciences, 2022, 23, 2485.	1.8	2
148	NMR study of haem exchange reaction of native myoglobin and haemoglobin. Magnetic Resonance in Chemistry, 1993, 31, S113-S117.	1.1	1
149	Mechanism of peroxidase activity as studied with some recombinant horseradish peroxidases. Journal of Inorganic Biochemistry, 1997, 67, 80.	1.5	1
150	Conformational ensemble of a multidomain protein explored by Gd3+ electron paramagnetic resonance. Biophysical Journal, 2021, 120, 2943-2951.	0.2	1
151	Round-Table Discussion on "Future of Biophysics― Seibutsu Butsuri, 2012, 52, 083-095.	0.0	1
152	The effects of pressure on O2 and CO binding kinetics for hemoproteins. Journal of Inorganic Biochemistry, 1989, 36, 314.	1.5	0
153	Structure and function of module-substituted hemoproteins. Journal of Inorganic Biochemistry, 1995, 59, 435.	1.5	0
154	S3f1-4 Generality of Initial Collapse Demonstrated by Scaling Relationship for Submillisecond Intermediates of Protein Folding(S3-f1: "Hydration Effects on Structure and Thermodynamics of) Tj ETQq0 0 0 rg	gBTq /@ verlo	ocko10 Tf 50 3
155	S14I4 Structural and Functional Characterization of Sensor Proteins Regulated by Heme Binding(Protein-Ligand Interactions). Seibutsu Butsuri, 2007, 47, S20.	0.0	0
156	Amorphous Aggregation of Cytochrome C with Inherently low Amyloidogenicity is Characterized by the Metastability of Supersaturation and the Phase Diagram. Biophysical Journal, 2016, 110, 399a.	0.2	0
157	A single mutation converts Alr5027 from cyanobacteria Nostoc sp. PCC 7120 to a heme-binding protein with heme-degrading ability. Journal of Inorganic Biochemistry, 2020, 203, 110916.	1.5	0
158	Spectroscopic Characterization of Halorhodopsin Reconstituted into Nanodisks Using Native Lipids. Biophysical Journal, 2020, 118, 2853-2865.	0.2	0
159	Pressure Effects on the Intramolecular Electron Transfer Reactions in Hemoproteins. , 2002, , 187-203.		0
160	Regulation Mechanism of Cytochrome P450cam-Catalyzed Oxygenation Reaction upon Putidaredoxin Binding. Seibutsu Butsuri, 2005, 45, 78-83.	0.0	0
161	Japanese Only. Seibutsu Butsuri, 2006, 46, 1.	0.0	0
162	Volume Profile Analysis for Protein Folding. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2007, 17, 13-22.	0.1	0

#	Article	IF	CITATIONS
163	Early Research in Biophysics Award. Seibutsu Butsuri, 2007, 47, 059-061.	0.0	0
164	Early Research in Biophysics Award —Report on the Third Award Selection Process—. Seibutsu Butsuri, 2008, 48, 052-055.	0.0	0
165	Report of Symposium on Gender Equality in the 45th Annual Meeting of the Biophysical Society of Japan. Seibutsu Butsuri, 2008, 48, 056-057.	0.0	0
166	Characterization and Molecular Design of Hemoproteins by Protein Engineering Seibutsu Butsuri, 1993, 33, 212-218.	0.0	0
167	Catalytic Roles of the Distal Site Hydrogen Bond Network of Peroxidases. , 1998, , 354-358.		0
168	Electron Transfer Pathway Analysis from Cytochrome C to Cytochrome C Oxidase Under Turnover Conditions. ECS Meeting Abstracts, 2018, , .	0.0	0
169	Structural Basis for Protein Folding and Holding Mediated by Molecular Chaperones. Seibutsu Butsuri, 2019, 59, 197-201.	0.0	0
170	Structural Factors for Regulation of Electron Transfer from Cytochrome C to Cytochrome C Oxidase. ECS Meeting Abstracts, 2019, , .	0.0	0
171	Volume Profile of Protein Determined by Pressure Effects. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2020, 30, 4-11.	0.1	0
172	Electron Transfer from Cytochrome C to Cytochrome C Oxidase: Contribution of Hydrophobic "Breakwater―to Electron Transfer. ECS Meeting Abstracts, 2020, MA2020-01, 941-941.	0.0	0
173	Integrated bio-metal science: New frontiers of bio-metal science opened with cutting-edge techniques. Biophysics and Physicobiology, 2020, 17, 94-97.	0.5	0
174	Nonhaem Iron-based Sensors of Reactive Oxygen and Nitrogen Species. 2-Oxoglutarate-Dependent Oxygenases, 2017, , 179-218.	0.8	0
175	Structural and Functional Characterization of Electron Transfer Complex between Cytochrome C and Cytochrome C Oxidase. ECS Meeting Abstracts, 2022, MA2022-01, 983-983.	0.0	0