Daniela Braida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5203996/publications.pdf

Version: 2024-02-01

36 papers 1,687 citations

394390 19 h-index 35 g-index

37 all docs

 $\begin{array}{c} 37 \\ \text{docs citations} \end{array}$

37 times ranked

2481 citing authors

#	Article	IF	CITATIONS
1	Pharmacologic Rescue of Impaired Cognitive Flexibility, Social Deficits, Increased Aggression, and Seizure Susceptibility in Oxytocin Receptor Null Mice: A Neurobehavioral Model of Autism. Biological Psychiatry, 2011, 69, 875-882.	1.3	315
2	Cognitive function in young and adult IL (interleukin)-6 deficient mice. Behavioural Brain Research, 2004, 153, 423-429.	2.2	144
3	î"9-Tetrahydrocannabinol-induced conditioned place preference and intracerebroventricular self-administration in rats. European Journal of Pharmacology, 2004, 506, 63-69.	3.5	132
4	Hallucinatory and rewarding effect of salvinorin A in zebrafish: $\hat{\mathbb{P}}$ -opioid and CB1-cannabinoid receptor involvement. Psychopharmacology, 2007, 190, 441-448.	3.1	122
5	Potential anxiolytic―and antidepressantâ€like effects of salvinorin A, the main active ingredient of <i>Salvia divinorum</i> , in rodents. British Journal of Pharmacology, 2009, 157, 844-853.	5.4	113
6	5-HT1A receptors are involved in the anxiolytic effect of Δ9-tetrahydrocannabinol and AM 404, the anandamide transport inhibitor, in Sprague–Dawley rats. European Journal of Pharmacology, 2007, 555, 156-163.	3.5	100
7	Involvement of \hat{l}^2 -Opioid and Endocannabinoid System on Salvinorin A-Induced Reward. Biological Psychiatry, 2008, 63, 286-292.	1.3	89
8	Neurohypophyseal hormones manipulation modulate social and anxiety-related behavior in zebrafish. Psychopharmacology, 2012, 220, 319-330.	3.1	85
9	Post-ischemic treatment with cannabidiol prevents electroencephalographic flattening, hyperlocomotion and neuronal injury in gerbils. Neuroscience Letters, 2003, 346, 61-64.	2.1	66
10	eEF2K/eEF2 Pathway Controls the Excitation/Inhibition Balance and Susceptibility to Epileptic Seizures. Cerebral Cortex, 2017, 27, bhw075.	2.9	57
11	Role of the endocannabinoid system in MDMA intracerebral selfâ€administration in rats. British Journal of Pharmacology, 2002, 136, 1089-1092.	5.4	52
12	Design and Characterization of Superpotent Bivalent Ligands Targeting Oxytocin Receptor Dimers via a Channel-Like Structure. Journal of Medicinal Chemistry, 2016, 59, 7152-7166.	6.4	49
13	A new model to study visual attention in zebrafish. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 55, 80-86.	4.8	48
14	The X-Linked Intellectual Disability Protein IL1RAPL1 Regulates Dendrite Complexity. Journal of Neuroscience, 2017, 37, 6606-6627.	3.6	36
15	Pharmacological Modulation of AMPAR Rescues Intellectual Disability-Like Phenotype in Tm4sf2â^'/y Mice. Cerebral Cortex, 2017, 27, 5369-5384.	2.9	33
16	Eptastigmine: Ten Years of Pharmacology, Toxicology, Pharmacokinetic, and Clinical Studies. CNS Neuroscience & Therapeutics, 2001, 7, 369-386.	4.0	31
17	Fingolimod Limits Acute A \hat{l}^2 Neurotoxicity and Promotes Synaptic Versus Extrasynaptic NMDA Receptor Functionality in Hippocampal Neurons. Scientific Reports, 2017, 7, 41734.	3.3	27
18	Learning and Memory Impairment Induced by Salvinorin A, the Principal Ingredient of <i>Salvia divinorum</i> , in Wistar Rats. International Journal of Toxicology, 2011, 30, 650-661.	1.2	25

#	Article	IF	CITATIONS
19	Mice discriminate between stationary and moving 2D shapes: Application to the object recognition task to increase attention. Behavioural Brain Research, 2013, 242, 95-101.	2.2	21
20	Ritanserin-sensitive receptors modulate the prosocial and the anxiolytic effect of MDMA derivatives, DOB and PMA, in zebrafish. Behavioural Brain Research, 2016, 314, 181-189.	2.2	21
21	Increased sensitivity to î"9-THC-induced rewarding effects after seven-week exposure to electronic and tobacco cigarettes in mice. European Neuropsychopharmacology, 2019, 29, 566-576.	0.7	14
22	3,4 Methylenedioxymethamphetamine (ecstasy) impairs eight-arm radial maze performance and arm entry pattern in rats Behavioral Neuroscience, 2002, 116, 298-304.	1.2	13
23	Impaired approach to novelty and striatal alterations in the oxytocin receptor deficient mouse model of autism. Hormones and Behavior, 2019, 114, 104543.	2.1	12
24	Persistent cognitive and affective alterations at late withdrawal stages after long-term intermittent exposure to tobacco smoke or electronic cigarette vapour: Behavioural changes and their neurochemical correlates. Pharmacological Research, 2020, 158, 104941.	7.1	12
25	Behavioural and pharmacological profiles of zebrafish administrated pyrrolidinyl benzodioxanes and prolinol aryl ethers with high affinity for heteromeric nicotinic acetylcholine receptors. Psychopharmacology, 2020, 237, 2317-2326.	3.1	11
26	Abuse potential of methylenedioxymethamphetamine (MDMA) and its derivatives in zebrafish: role of serotonin 5HT2-type receptors. Psychopharmacology, 2016, 233, 3031-3039.	3.1	10
27	Altered mRNA Levels of Stress-Related Peptides in Mouse Hippocampus and Caudate-Putamen in Withdrawal after Long-Term Intermittent Exposure to Tobacco Smoke or Electronic Cigarette Vapour. International Journal of Molecular Sciences, 2021, 22, 599.	4.1	9
28	Conservation of mechanisms regulating emotional-like responses on spontaneous nicotine withdrawal in zebrafish and mammals. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 111, 110334.	4.8	8
29	Different attentional dysfunctions in <i>eEF2K</i> ^{<i>â^'/â^'</i>} <i>, IL1RAPL1</i> ^{<i>â^'/â^'</i>} mice. Genes, Brain and Behavior, 2019, 18, e12563.	2.2	7
30	Acute DOB and PMA Administration Impairs Motor and Sensorimotor Responses in Mice and Causes Hallucinogenic Effects in Adult Zebrafish. Brain Sciences, 2020, 10, 586.	2.3	6
31	The Non-Peptide Arginine-Vasopressin v1a Selective Receptor Antagonist, SR49059, Blocks the Rewarding, Prosocial, and Anxiolytic Effects of 3,4-Methylenedioxymethamphetamine and Its Derivatives in Zebra Fish. Frontiers in Psychiatry, 2017, 8, 146.	2.6	5
32	Increased Response to 3,4-Methylenedioxymethamphetamine (MDMA) Reward and Altered Gene Expression in Zebrafish During Short- and Long-Term Nicotine Withdrawal. Molecular Neurobiology, 2021, 58, 1650-1663.	4.0	5
33	Diazepam Protects Against the Enhanced Toxicity of Cocaine Adulterated With Atropine. Journal of Pharmacological Sciences, 2008, 107, 408-418.	2.5	4
34	Spontaneous object and movement representations in 4-month-old human infants and albino Swiss mice. Cognition, 2015, 137, 63-71.	2.2	4
35	Eptastigmine. CNS Drugs, 1998, 9, 76.	5.9	1
36	Visual Object Recognition Task. Handbook of Behavioral Neuroscience, 2018, 27, 139-150.	0.7	O