List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5203867/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genotoxic impact of aluminum-containing nanomaterials in human intestinal and hepatic cells. Toxicology in Vitro, 2022, 78, 105257.	2.4	6
2	Emerging cold plasma treatment and machine learning prospects for seed priming: a step towards sustainable food production. RSC Advances, 2022, 12, 10467-10488.	3.6	37
3	Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles. Nanoscale, 2022, 14, 4690-4704.	5.6	15
4	Frequencies and TCR Repertoires of Human 2,4,6-Trinitrobenzenesulfonic Acid-specific T Cells. Frontiers in Toxicology, 2022, 4, 827109.	3.1	5
5	Cardiovascular functions and arterial stiffness after JUUL use. Tobacco Induced Diseases, 2022, 20, 1-11.	0.6	2
6	In Vitro Monitoring of Human T Cell Responses to Skin Sensitizing Chemicals—A Systematic Review. Cells, 2022, 11, 83.	4.1	5
7	Investigation of the Associations between a Nanomaterial's Microrheology and Toxicology. ACS Omega, 2022, 7, 13985-13997.	3.5	25
8	Perspectives on the Technological Aspects and Biomedical Applications of Virus‣ike Particles/Nanoparticles in Reproductive Biology: Insights on the Medicinal and Toxicological Outlook. Advanced NanoBiomed Research, 2022, 2, .	3.6	23
9	Tattooing: Toxicology and Risk Assessment. , 2021, , 1-14.		0
10	Tattoos – more than just colored skin? Searching for tattoo allergens. JDDG - Journal of the German Society of Dermatology, 2021, 19, 657-669.	0.8	13
11	Emerging Application of Nanorobotics and Artificial Intelligence To Cross the BBB: Advances in Design, Controlled Maneuvering, and Targeting of the Barriers. ACS Chemical Neuroscience, 2021, 12, 1835-1853.	3.5	66
12	Use of Cause-and-Effect Analysis to Optimize the Reliability of <i>In Vitro</i> Inhalation Toxicity Measurements Using an Air–Liquid Interface. Chemical Research in Toxicology, 2021, 34, 1370-1385.	3.3	11
13	Novel indirect co-culture of immortalised hepatocytes with monocyte derived macrophages is characterised by pro-inflammatory cytokine networks. Toxicology in Vitro, 2021, 73, 105134.	2.4	1
14	Nicotine delivery and relief of craving after consumption of European JUUL e-cigarettes prior and after pod modification. Scientific Reports, 2021, 11, 12078.	3.3	7
15	Emerging Technologies for In Vitro Inhalation Toxicology. Advanced Healthcare Materials, 2021, 10, e2100633.	7.6	34
16	A prospective whole-mixture approach to assess risk of the food and chemical exposome. Nature Food, 2021, 2, 463-468.	14.0	19
17	Advances in Smoking Related In Vitro Inhalation Toxicology: A Perspective Case of Challenges and Opportunities from Progresses in Lung-on-Chip Technologies. Chemical Research in Toxicology, 2021, 34, 1984-2002.	3.3	44
18	Rapid, sensitive, and reliable quantitation of nicotine and its main metabolites cotinine and trans-3′-hydroxycotinine by LC-MS/MS: Method development and validation for human plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1179, 122736.	2.3	7

#	Article	IF	CITATIONS
19	Phototoxic versus photoprotective effects of tattoo pigments in reconstructed human skin models. Toxicology, 2021, 460, 152872.	4.2	3
20	Evaluating Particle Emissions and Toxicity of 3D Pen Printed Filaments with Metal Nanoparticles As Additives: <i>In Vitro</i> and <i>in Silico</i> Discriminant Function Analysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 11724-11737.	6.7	39
21	Commensal-Related Changes in the Epidermal Barrier Function Lead to Alterations in the Benzo[<i>a</i>]Pyrene Metabolite Profile and Its Distribution in 3D Skin. MBio, 2021, 12, e0122321.	4.1	3
22	Sustainable Agriculture through Multidisciplinary Seed Nanopriming: Prospects of Opportunities and Challenges. Cells, 2021, 10, 2428.	4.1	48
23	The role of DNA-binding and ARNT dimerization on the nucleo-cytoplasmic translocation of the aryl hydrocarbon receptor. Scientific Reports, 2021, 11, 18194.	3.3	8
24	Nanomaterials induce different levels of oxidative stress, depending on the used model system: Comparison of in vitro and in vivo effects. Science of the Total Environment, 2021, 801, 149538.	8.0	15
25	Tattooing: Toxicology and Risk Assessment. , 2021, , 1309-1321.		0
26	Machine-Learning-Based Approach to Decode the Influence of Nanomaterial Properties on Their Interaction with Cells. ACS Applied Materials & Interfaces, 2021, 13, 1943-1955.	8.0	101
27	Identification of pigments related to allergic tattoo reactions in 104 human skin biopsies. Contact Dermatitis, 2020, 82, 73-82.	1.4	51
28	Tattooing: overriding the skin barrier and the journey into the unknown. Archives of Toxicology, 2020, 94, 647-648.	4.2	2
29	Tattoo inks and cancer. Cancer Epidemiology, 2020, 65, 101655.	1.9	10
30	A multi-omics approach reveals mechanisms of nanomaterial toxicity and structure–activity relationships in alveolar macrophages. Nanotoxicology, 2020, 14, 181-195.	3.0	24
31	Indirect co-cultivation of HepG2 with differentiated THP-1 cells induces AHR signalling and release of pro-inflammatory cytokines. Toxicology in Vitro, 2020, 68, 104957.	2.4	5
32	TatS: a novel in vitro tattooed human skin model for improved pigment toxicology research. Archives of Toxicology, 2020, 94, 2423-2434.	4.2	10
33	Artificial Intelligence and Machine Learning Empower Advanced Biomedical Material Design to Toxicity Prediction. Advanced Intelligent Systems, 2020, 2, 2000084.	6.1	77
34	Emerging paradigm against global antimicrobial resistance via bioprospecting of mushroom into novel nanotherapeutics development. Trends in Food Science and Technology, 2020, 106, 333-344.	15.1	31
35	Parametric Optimization of an Air–Liquid Interface System for Flow-Through Inhalation Exposure to Nanoparticles: Assessing Dosimetry and Intracellular Uptake of CeO2 Nanoparticles. Nanomaterials, 2020, 10, 2369.	4.1	25
36	Investigating ion-release from nanocomposites in food simulant solutions: Case studies contrasting kaolin, CaCO3 and Cu-phthalocyanine. Food Packaging and Shelf Life, 2020, 26, 100560.	7.5	1

#	Article	IF	CITATIONS
37	Trendy e-cigarettes enter Europe: chemical characterization of JUUL pods and its aerosols. Archives of Toxicology, 2020, 94, 1985-1994.	4.2	43
38	Artificial Intelligence and Machine Learning in Computational Nanotoxicology: Unlocking and Empowering Nanomedicine. Advanced Healthcare Materials, 2020, 9, e1901862.	7.6	157
39	Safety of tattoos and permanent make-up: a regulatory view. Archives of Toxicology, 2020, 94, 357-369.	4.2	42
40	The Vitamin A and D Exposure of Cells Affects the Intracellular Uptake of Aluminum Nanomaterials and Its Agglomeration Behavior: A Chemo-Analytic Investigation. International Journal of Molecular Sciences, 2020, 21, 1278.	4.1	11
41	Aluminum and aluminum oxide nanomaterials uptake after oral exposure - a comparative study. Scientific Reports, 2020, 10, 2698.	3.3	31
42	Cellular Effects of <i>In Vitro</i> -Digested Aluminum Nanomaterials on Human Intestinal Cells. ACS Applied Nano Materials, 2020, 3, 2246-2256.	5.0	7
43	ToF-SIMS 3D imaging unveils important insights on the cellular microenvironment during biomineralization of gold nanostructures. Scientific Reports, 2020, 10, 261.	3.3	31
44	Characterization of Quinoline Yellow Dyes As Transient Aryl Hydrocarbon Receptor Agonists. Chemical Research in Toxicology, 2020, 33, 742-750.	3.3	10
45	Tackling Complex Analytical Tasks: An ISO/TS-Based Validation Approach for Hydrodynamic Chromatography Single Particle Inductively Coupled Plasma Mass Spectrometry. Materials, 2020, 13, 1447.	2.9	10
46	TCRs with segment TRAV9â€2 or a CDR3 histidine are overrepresented among nickelâ€specific CD4+ T cells. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2574-2586.	5.7	16
47	Recent Advances in Plant Nanobionics and Nanobiosensors for Toxicology Applications. Current Nanoscience, 2020, 16, 27-41.	1.2	23
48	Multifunctional magnetic hairbot for untethered osteogenesis, ultrasound contrast imaging and drug delivery. Biomaterials, 2019, 219, 119394.	11.4	76
49	An in-depth multi-omics analysis in RLE-6TN rat alveolar epithelial cells allows for nanomaterial categorization. Particle and Fibre Toxicology, 2019, 16, 38.	6.2	26
50	Mass Cytometry Enabling Absolute and Fast Quantification of Silver Nanoparticle Uptake at the Single Cell Level. Analytical Chemistry, 2019, 91, 11514-11519.	6.5	16
51	Distribution of nickel and chromium containing particles from tattoo needle wear in humans and its possible impact on allergic reactions. Particle and Fibre Toxicology, 2019, 16, 33.	6.2	48
52	Micro-nanorobots: important considerations when developing novel drug delivery platforms. Expert Opinion on Drug Delivery, 2019, 16, 1259-1275.	5.0	71
53	The Adoption of Three-Dimensional Additive Manufacturing from Biomedical Material Design to 3D Organ Printing. Applied Sciences (Switzerland), 2019, 9, 811.	2.5	43
54	In Vivo Biocompatibility of Electrospun Biodegradable Dual Carrier (Antibiotic + Growth Factor) in a Mouse Model—Implications for Rapid Wound Healing. Pharmaceutics, 2019, 11, 180.	4.5	49

#	Article	IF	CITATIONS
55	Simultaneous Quantification and Visualization of Titanium Dioxide Nanomaterial Uptake at the Single Cell Level in an In Vitro Model of the Human Small Intestine. Small Methods, 2019, 3, 1800540.	8.6	8
56	Determination of Nanoparticle Uptake, Distribution, and Characterization in Plant Root Tissue after Realistic Long-Term Exposure to Sewage Sludge Using Information from Mass Spectrometry. Environmental Science & Technology, 2019, 53, 5416-5426.	10.0	17
57	Consumer protection and risk assessment: sensitising substances in consumer products. Allergo Journal International, 2019, 28, 167-182.	2.0	7
58	Nanoparticle induced barrier function assessment at liquid–liquid and air–liquid interface in novel human lung epithelia cell lines. Toxicology Research, 2019, 8, 1016-1027.	2.1	41
59	Thermal Stability of Polymer Additives: Comparison of Decomposition Models Including Oxidative Pyrolysis. Journal of Vinyl and Additive Technology, 2019, 25, E12.	3.4	10
60	Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design. Toxicology Mechanisms and Methods, 2019, 29, 378-387.	2.7	147
61	Chemical activation of estrogen and aryl hydrocarbon receptor signaling pathways and their interaction in toxicology and metabolism. Expert Opinion on Drug Metabolism and Toxicology, 2019, 15, 219-229.	3.3	52
62	The impact of nanomaterial characteristics on inhalation toxicity. Toxicology Research, 2018, 7, 321-346.	2.1	42
63	Nanomaterials: certain aspects of application, risk assessment and risk communication. Archives of Toxicology, 2018, 92, 121-141.	4.2	109
64	Decision tree models to classify nanomaterials according to the <i>DF4nanoGrouping</i> scheme. Nanotoxicology, 2018, 12, 1-17.	3.0	71
65	A multi-omics analysis reveals metabolic reprogramming in THP-1 cells upon treatment with the contact allergen DNCB. Toxicology and Applied Pharmacology, 2018, 340, 21-29.	2.8	9
66	Quantitative measurement of nanoparticle uptake by flow cytometry illustrated by an interlaboratory comparison of the uptake of labelled polystyrene nanoparticles. NanoImpact, 2018, 9, 42-50.	4.5	47
67	Challenges in characterizing the environmental fate and effects of carbon nanotubes and inorganic nanomaterials in aquatic systems. Environmental Science: Nano, 2018, 5, 48-63.	4.3	37
68	Seed-mediated synthesis of plasmonic gold nanoribbons using cancer cells for hyperthermia applications. Journal of Materials Chemistry B, 2018, 6, 7573-7581.	5.8	32
69	Uptake and molecular impact of aluminum-containing nanomaterials on human intestinal caco-2 cells. Nanotoxicology, 2018, 12, 992-1013.	3.0	24
70	Localization, Characterization and Local Biokinetics of Tattoo Pigment Particles in Human Skin and Lymph Nodes by Means of Synchrotron-based Micro- and NanoXRF. Microscopy and Microanalysis, 2018, 24, 404-405.	0.4	0
71	Laser Irradiation of Organic Tattoo PigmentsÂReleases Carcinogens with 3,3′-Dichlorobenzidine Inducing DNA Strand Breaks in Human Skin Cells. Journal of Investigative Dermatology, 2018, 138, 2687-2690.	0.7	24
72	Quantification of silver nanoparticles taken up by single cells using inductively coupled plasma mass spectrometry in the single cell measurement mode. Journal of Analytical Atomic Spectrometry, 2018, 33, 1256-1263.	3.0	34

#	Article	IF	CITATIONS
73	Matrix-assisted laser desorption/ionization tandem mass spectrometry for identification of organic tattoo pigments in inks and tissue samples. Analyst, The, 2018, 143, 3941-3950.	3.5	11
74	CMR substances in consumer products: from food contact materials to toys. Archives of Toxicology, 2018, 92, 1663-1671.	4.2	2
75	Characterization of aluminum, aluminum oxide and titanium dioxide nanomaterials using a combination of methods for particle surface and size analysis. RSC Advances, 2018, 8, 14377-14388.	3.6	36
76	The prospective role of nanobiotechnology in food and food packaging products. Integrative Food, Nutrition and Metabolism, 2018, 5, .	0.3	12
77	Hepatic co-cultures in vitro reveal suitable to detect Nrf2-mediated oxidative stress responses on the bladder carcinogen o -anisidine. Toxicology in Vitro, 2017, 40, 153-160.	2.4	5
78	Toxification of polycyclic aromatic hydrocarbons by commensal bacteria from human skin. Archives of Toxicology, 2017, 91, 2331-2341.	4.2	29
79	A Novel Dual-Color Luciferase Reporter Assay for Simultaneous Detection of Estrogen and Aryl Hydrocarbon Receptor Activation. Chemical Research in Toxicology, 2017, 30, 1436-1447.	3.3	12
80	Biokinetics of nanomaterials: The role of biopersistence. NanoImpact, 2017, 6, 69-80.	4.5	58
81	Impact of an Artificial Digestion Procedure on Aluminum-Containing Nanomaterials. Langmuir, 2017, 33, 10726-10735.	3.5	45
82	Synchrotron-based ν-XRF mapping and μ-FTIR microscopy enable to look into the fate and effects of tattoo pigments in human skin. Scientific Reports, 2017, 7, 11395.	3.3	83
83	Application of proteomics in the elucidation of chemical-mediated allergic contact dermatitis. Toxicology Research, 2017, 6, 595-610.	2.1	13
84	Are metals involved in tattooâ€related hypersensitivity reactions? A case report. Contact Dermatitis, 2017, 77, 397-405.	1.4	32
85	Embryonic stem cells and the next generation of developmental toxicity testing. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 833-841.	3.3	23
86	Benchmark of Nanoparticle Tracking Analysis on Measuring Nanoparticle Sizing and Concentration. Journal of Micro and Nano-Manufacturing, 2017, 5, .	0.7	30
87	Systems Biology to Support Nanomaterial Grouping. Advances in Experimental Medicine and Biology, 2017, 947, 143-171.	1.6	13
88	Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 272-321.	1.5	214
89	The Risk of Bacterial Infection After Tattooing. Deutsches Ärzteblatt International, 2016, 113, 665-671.	0.9	41
90	Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS): A New Tool for the Analysis of Toxicological Effects on Single Cell Level. Toxics, 2016, 4, 5.	3.7	36

#	Article	IF	CITATIONS
91	Estrogenic Activity of Mineral Oil Aromatic Hydrocarbons Used in Printing Inks. PLoS ONE, 2016, 11, e0147239.	2.5	29
92	Quantification and visualization of cellular uptake of TiO2 and Ag nanoparticles: comparison of different ICP-MS techniques. Journal of Nanobiotechnology, 2016, 14, 50.	9.1	82
93	Identification and hazard prediction of tattoo pigments by means of pyrolysis—gas chromatography/mass spectrometry. Archives of Toxicology, 2016, 90, 1639-1650.	4.2	36
94	Editor's Highlight: Identification and Characterization of Teratogenic Chemicals Using Embryonic Stem Cells Isolated From a Wnt/β-Catenin-Reporter Transgenic Mouse Line. Toxicological Sciences, 2016, 152, 382-394.	3.1	5
95	Oxidative and inert pyrolysis on-line coupled to gas chromatography with mass spectrometric detection: On the pyrolysis products of tobacco additives. International Journal of Hygiene and Environmental Health, 2016, 219, 780-791.	4.3	5
96	Transgenic Mouse Models Transferred into the Test Tube: New Perspectives for Developmental Toxicity Testing In Vitro ?. Trends in Pharmacological Sciences, 2016, 37, 822-830.	8.7	3
97	Genotoxicity of nanomaterials in vitro: treasure or trash?. Archives of Toxicology, 2016, 90, 2827-2830.	4.2	6
98	Osteogenic Differentiation of Human Embryonic Stem Cell-Derived Mesenchymal Progenitor Cells as a Model for Assessing Developmental Bone ToxicityIn Vitro. Applied in Vitro Toxicology, 2016, 2, 127-142.	1.1	7
99	At the dark end of the rainbow: data gaps in tattoo toxicology. Archives of Toxicology, 2016, 90, 1763-1765.	4.2	8
100	A redox proteomics approach to investigate the mode of action of nanomaterials. Toxicology and Applied Pharmacology, 2016, 299, 24-29.	2.8	17
101	G protein-coupled receptor 30 ligand G-1 increases aryl hydrocarbon receptor signalling by inhibition of tubulin assembly and cell cycle arrest in human MCF-7 cells. Archives of Toxicology, 2016, 90, 1939-1948.	4.2	14
102	A medical-toxicological view of tattooing. Lancet, The, 2016, 387, 395-402.	13.7	177
103	From the Tattoo Studio to the Emergency Room. Deutsches Ärzteblatt International, 2016, 113, 672-675.	0.9	11
104	Formation of highly toxic hydrogen cyanide upon ruby laser irradiation of the tattoo pigment phthalocyanine blue. Scientific Reports, 2015, 5, 12915.	3.3	47
105	Proteomic analysis of protein carbonylation: a useful tool to unravel nanoparticle toxicity mechanisms. Particle and Fibre Toxicology, 2015, 12, 36.	6.2	49
106	A Bmp Reporter Transgene Mouse Embryonic Stem Cell Model as a Tool to Identify and Characterize Chemical Teratogens. Toxicological Sciences, 2015, 146, 374-385.	3.1	11
107	Insights on the human microbiome and its xenobiotic metabolism: what is known about its effects on human physiology?. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 411-425.	3.3	47
108	Pathway and Time-Resolved Benzo[<i>a</i>]pyrene Toxicity on Hepa1c1c7 Cells at Toxic and Subtoxic Exposure. Journal of Proteome Research, 2015, 14, 164-182.	3.7	34

#	Article	IF	CITATIONS
109	European Tobacco Product Directive: How to address characterizing flavors as a matter of attractiveness?. Archives of Toxicology, 2015, 89, 1395-1398.	4.2	3
110	Moving from rats to cellular omics in regulatory toxicology: great challenge toward sustainability or "up-shit-creek without a paddle�. Archives of Toxicology, 2015, 89, 819-821.	4.2	13
111	Regulatory toxicology in the twenty-first century: challenges, perspectives and possible solutions. Archives of Toxicology, 2015, 89, 823-850.	4.2	51
112	More extensive tests for e-cigarettes. Nature, 2015, 525, 187-187.	27.8	3
113	Safety limits for elements in toys: a comparison between the old and the new European toys safety directive. Archives of Toxicology, 2014, 88, 2315-2318.	4.2	3
114	Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake. Journal of Nanobiotechnology, 2014, 12, 59.	9.1	73
115	Dual beam organic depth profiling using large argon cluster ion beams. Surface and Interface Analysis, 2014, 46, 936-939.	1.8	18
116	E-cigarettes in Europe: does regulation swing from overcautious to careless?. Archives of Toxicology, 2014, 88, 1291-1294.	4.2	9
117	Chemical hazards present in liquids and vapors of electronic cigarettes. Archives of Toxicology, 2014, 88, 1295-1308.	4.2	274
118	Waterpipe smoking: Analysis of the aroma profile of flavored waterpipe tobaccos. Talanta, 2013, 115, 665-674.	5.5	37
119	The Advent of the Golden Era of Animal Alternatives. , 2013, , 49-73.		2
120	Screening of fragrances in scented toys: a comparative study of different headspace techniques coupled to GC-MS. Analytical Methods, 2013, 5, 508-515.	2.7	10
121	The DNT-EST: A predictive embryonic stem cell-based assay for developmental neurotoxicity testing in vitro. Toxicology, 2013, 314, 135-147.	4.2	34
122	TOF-SIMS analysis of cell membrane changes in functional impaired human macrophages upon nanosilver treatment. Surface and Interface Analysis, 2013, 45, 483-485.	1.8	16
123	Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Materials, 2013, 6, 2295-2350.	2.9	849
124	Wind of Change Challenges Toxicological Regulators. Environmental Health Perspectives, 2012, 120, 1489-1494.	6.0	28
125	"Drugs on oxygen†an update and perspective on the role of cytochrome P450 testing in pharmacology. Expert Opinion on Drug Metabolism and Toxicology, 2012, 8, 1357-1362.	3.3	5
126	Waterpipe smoking: the role of humectants in the release of toxic carbonyls. Archives of Toxicology, 2012, 86, 1309-1316.	4.2	49

#	Article	IF	CITATIONS
127	Waterpipe smoking: a new tobacco pandemic entailing severe health risks?. Archives of Toxicology, 2012, 86, 1161-1162.	4.2	4
128	Effects of Silver Nanoparticles on Primary Mixed Neural Cell Cultures: Uptake, Oxidative Stress and Acute Calcium Responses. Toxicological Sciences, 2012, 126, 457-468.	3.1	206
129	Drug-mediated toxicity: illuminating the †bad' in the test tube by means of cellular assays?. Trends in Pharmacological Sciences, 2012, 33, 353-364.	8.7	18
130	Exposure to Polycyclic Aromatic Hydrocarbons: Bulky DNA Adducts and Cellular Responses. Exs, 2012, 101, 107-131.	1.4	71
131	Waterpipe smoke: A considerable source of human exposure against furanic compounds. Analytica Chimica Acta, 2012, 709, 105-112.	5.4	45
132	Allergic contact dermatitis: epidemiology, molecular mechanisms, in vitro methods and regulatory aspects. Cellular and Molecular Life Sciences, 2012, 69, 763-781.	5.4	286
133	Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses. Journal of Physics: Conference Series, 2011, 304, 012030.	0.4	70
134	Application of Laser Postionization Secondary Neutral Mass Spectrometry/Time-of-Flight Secondary Ion Mass Spectrometry in Nanotoxicology: Visualization of Nanosilver in Human Macrophages and Cellular Responses. ACS Nano, 2011, 5, 3059-3068.	14.6	91
135	Analysis of carcinogenic polycyclic aromatic hydrocarbons in complex environmental mixtures by LC-APPI-MS/MS. Analytica Chimica Acta, 2011, 702, 218-224.	5.4	49
136	Physiologically based toxicokinetic modelling as a tool to assess target organ toxicity in route-to-route extrapolation—The case of coumarin. Toxicology Letters, 2011, 202, 100-110.	0.8	13
137	Mainstream smoke of the waterpipe: Does this environmental matrix reveal as significant source of toxic compounds?. Toxicology Letters, 2011, 205, 279-284.	0.8	82
138	Chemical toxicity testing in vitro using cytochrome P450–expressing cell lines, such as human CYP1B1. Nature Protocols, 2011, 6, 677-688.	12.0	10
139	Alternatives to animal testing: current status and future perspectives. Archives of Toxicology, 2011, 85, 841-858.	4.2	94
140	Developmental toxicity testing in the 21st century: the sword of Damocles shattered by embryonic stem cell assays?. Archives of Toxicology, 2011, 85, 1361-1372.	4.2	27
141	Analysis of primary aromatic amines in the mainstream waterpipe smoke using liquid chromatography–electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 2011, 1218, 5628-5637.	3.7	59
142	Estimation of dermal and oral exposure of children to scented toys: Analysis of the migration of fragrance allergens by dynamic headspace GC–MS. Journal of Separation Science, 2011, 34, 2686-2696.	2.5	27
143	The Embryonic Stem Cell Test as Tool to Assess Structure-Dependent Teratogenicity: The Case of Valproic Acid. Toxicological Sciences, 2011, 120, 360-370.	3.1	30
144	The Role of Oxidative Stress in Carcinogenesis Induced by Metals and Xenobiotics. Cancers, 2010, 2, 376-396.	3.7	142

#	Article	IF	CITATIONS
145	T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays. Cellular and Molecular Life Sciences, 2010, 67, 4171-4184.	5.4	131
146	Investigations on the emission of fragrance allergens from scented toys by means of headspace solid-phase microextraction gas chromatography–mass spectrometry. Journal of Chromatography A, 2010, 1217, 3136-3143.	3.7	34
147	The Current Scientific and Legal Status of Alternative Methods to the LD50 Test for Botulinum Neurotoxin Potency Testing. ATLA Alternatives To Laboratory Animals, 2010, 38, 315-330.	1.0	50
148	Mechanistic insights on spider neurotoxins. Exs, 2010, 100, 293-315.	1.4	10
149	Embryonic Stem Cell Test Remastered: Comparison between the Validated EST and the New Molecular FACS-EST for Assessing Developmental Toxicity In Vitro. Toxicological Sciences, 2009, 108, 389-400.	3.1	102
150	On the impact of the molecule structure in chemical carcinogenesis. Exs, 2009, 99, 151-179.	1.4	48
151	Molecular, clinical and environmental toxicology. Preface. Exs, 2009, 99, XI-XIV.	1.4	2
152	Reactive species: A cell damaging rout assisting to chemical carcinogens. Cancer Letters, 2008, 266, 73-83.	7.2	156
153	Competitive inhibition of carcinogen-activating CYP1A1 and CYP1B1 enzymes by a standardized complex mixture of PAH extracted from coal tar. International Journal of Cancer, 2007, 120, 1161-1168.	5.1	42
154	On the species-specific biotransformation of dibenzo[a,l]pyrene. Chemico-Biological Interactions, 2006, 161, 37-48.	4.0	31
155	Metabolic Activation and Detoxification of Polycyclic Aromatic Hydrocarbons. , 2005, , 19-96.		30
156	Dibenzo[a,l]pyrene induced DNA adduct formation in lung tissue in vivo. Cancer Letters, 2005, 227, 25-32.	7.2	37
157	DNA Damage, Repair, and Mutation Induction by (+)-Syn and (â^')-Anti-Dibenzo[a,l]Pyrene-11,12-Diol-13,14-Epoxides in Mouse Cells. Cancer Research, 2004, 64, 7321-7328.	0.9	38
158	Mutations induced by (?)-anti-11R,12S-dihydrodiol 13S,14R-epoxide of dibenzo[a,l]pyrene in the coding region of the hypoxanthine phosphoribosyltransferase (Hprt) gene in Chinese hamster V79 cells. Environmental and Molecular Mutagenesis, 2003, 41, 131-139.	2.2	29
159	Cytochrome P450 1B1 Determines Susceptibility to Dibenzo[<i>a,l</i>]pyrene-Induced Tumor Formation. Chemical Research in Toxicology, 2002, 15, 1127-1135.	3.3	96
160	Cell Cycle Control and Cell Division: Implications for Chemically Induced Carcinogenesis The frontispiece background image of fluorescent asynchronous human cervical carcinoma HeLa S3 cells was kindly provided by Jon Hoyt and Randall W. King, Harvard Medical School, Boston. A glossary can be found at the end of the text ChemBioChem, 2002, 3, 506.	2.6	26
161	Effects of the (-)-anti-11R,12S-dihydrodiol 13S,14R-epoxide of dibenzo[a,l]pyrene on DNA adduct formation and cell cycle arrest in human diploid fibroblasts. Carcinogenesis, 2001, 22, 161-169.	2.8	18
162	Formation of Stable DNA Adducts and Apurinic Sites upon Metabolic Activation of Bay and Fjord Region Polycyclic Aromatic Hydrocarbons in Human Cell Cultures. Chemical Research in Toxicology, 2000, 13, 10-17.	3.3	55

#	Article	IF	CITATIONS
163	The level of DNA modification by (+)-syn-(11S,12R,13S,14R)- and (–)-anti-(11R,12S,13S,14R)-dihydrodiol epoxides of dibenzo[a,l]pyrene determined the effect on the proteins p53 and p21WAF1 in the human mammary carcinoma cell line MCF-7. Carcinogenesis, 1999, 20, 859-865.	2.8	38
164	Cancer initiation by polycyclic aromatic hydrocarbons results from formation of stable DNA adducts rather than apurinic sites. Carcinogenesis, 1999, 20, 1885-1891.	2.8	144
165	MOLECULAR STUDIES ON THE TOXIFYING EFFECTS BY GENETICALLY ENGINEERED CYTOCHROMES P450. Drug Metabolism Reviews, 1999, 31, 423-435.	3.6	21
166	Metabolic Activation of Dibenzo[a,l]pyrene by Human Cytochrome P450 1A1 and P450 1B1 Expressed in V79 Chinese Hamster Cells. Chemical Research in Toxicology, 1999, 12, 353-364.	3.3	56
167	The K-region trans-8,9-diol does not significantly contribute as an intermediate in the metabolic activation of dibenzo[a,l]pyrene to DNA-binding metabolites by human cytochrome P450 1A1 or 1B1. Cancer Research, 1999, 59, 4603-9.	0.9	16
168	Stable Expression of Human Cytochrome P450 1B1 in V79 Chinese Hamster Cells and Metabolically Catalyzed DNA Adduct Formation of Dibenzo[a,l]pyrene. Chemical Research in Toxicology, 1998, 11, 686-695.	3.3	116
169	Structure, Conformations, and Repair of DNA Adducts from Dibenzo[<i>a</i> , <i>l</i>]pyrene: ³² P-Postlabeling and Fluorescence Studies. Chemical Research in Toxicology, 1998, 11, 674-685.	3.3	35
	Stereoselective activation of dibenzo[<i>a, </i>]pyrene to (—)- <i>anti</i> (11 <i>R</i> , 12 <i>S</i> ,) Tj ETQq0 0	0	
170	14-epoxides which bind extensively to deoxyadenosine residues of DNA in the human mammary carcinoma cell line MCF-7. Carcinogenesis, 1995, 16, 2899-2907.	2.8	126
171	Synthesis and mutagenicity of the diastereomeric fjord-region 11,12-dihydrodiol 13,14-epoxides of dibenzo [a,l]pyrene. Carcinogenesis, 1994, 15, 2507-2516.	2.8	80
172	The potent carcinogen dibenzo[a,l]pyrene is metabolically activated to fjord-region 11,12-diol 13,14-epoxides in human mammary carcinoma MCF-7 cell cultures. Cancer Research, 1994, 54, 887-90.	0.9	45