Jorge Luis ChÃ;vez-ServÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5203678/publications.pdf

Version: 2024-02-01

566801 476904 32 968 15 29 g-index citations h-index papers 32 32 32 1356 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Content of industrially produced trans fatty acids in breast milk: An observational study. Food Science and Nutrition, 2022, 10, 2568-2581.	1.5	3
2	Relationship between Emotional Eating, Consumption of Hyperpalatable Energy-Dense Foods, and Indicators of Nutritional Status: A Systematic Review. Journal of Obesity, 2022, 2022, 1-11.	1.1	16
3	Evaluation of the effect of a school garden as an educational didactic tool in vegetable and fruit consumption in teenagers. Nutrition Research and Practice, 2021, 15, 235.	0.7	2
4	Rapid and reversible cell volume changes in response to osmotic stress in yeast. Brazilian Journal of Microbiology, 2021, 52, 895-903.	0.8	11
5	Phenolic profile and antioxidant capacity of Pithecellobium dulce (Roxb) Benth: a review. Journal of Food Science and Technology, 2020, 57, 4316-4336.	1.4	8
6	Preventive Effect of an Infusion of the Aqueous Extract of Chaya Leaves (<i>Cnidoscolus) Tj ETQq0 0 0 rgBT /Ove Sodium. Journal of Medicinal Food, 2019, 22, 851-860.</i>	rlock 10 T 0.8	f 50 547 Td 13
7	Caracterización fenólica y capacidad antioxidante de extractos alcohólicos de hojas crudas y hervidas de Cnidoscolus aconitifolius (Euphorbiaceae). Acta Botanica Mexicana, 2019, , .	0.1	5
8	Sustained Consumption of an Infusion of Chaya Leaf (<i>Cnidoscolus Aconitifolius</i>) Does Not Affect Nutritional Biomarkers in Sprague Dawley Rats. Current Topics in Nutraceutical Research, 2019, 18, 373-377.	0.1	0
9	Análisis nutrimental de un recetario mexicano de cocina de 1943. Estudios Sociales, 2019, 30, .	0.2	0
10	Effect on nutritional markers of a model of aberrant crypt foci induced by azoxymethane and sodium dextran sulfate in Sprague Dawley rats. Nutricion Hospitalaria, 2019, 36, 1163-1170.	0.2	1
11	Effects of feeding system, heat treatment and season on phenolic compounds and antioxidant capacity in goat milk, whey and cheese. Small Ruminant Research, 2018, 160, 54-58.	0.6	53
12	Phenolic profile and antioxidant capacity of Cnidoscolus chayamansa and Cnidoscolus aconitifolius: A review. Journal of Medicinal Plants Research, 2017, 11, 713-727.	0.2	19
13	Comparison of Chemical Composition and Growth of Amaranth (Amaranthus hypochondriacus) between Greenhouse and Open Field Systems. International Journal of Agriculture and Biology, 2017, 19, 577-583.	0.2	5
14	Total phenolic compounds in milk from different species. Design of an extraction technique for quantification using the Folin–Ciocalteu method. Food Chemistry, 2015, 176, 480-486.	4.2	90
15	Content and evolution of potential furfural compounds in commercial milk-based infant formula powder after opening the packet. Food Chemistry, 2015, 166, 486-491.	4.2	39
16	Numerical study of thermal environment of a greenhouse dedicated to amaranth seed cultivation. Solar Energy, 2015, 120, 536-548.	2.9	4
17	Changes in Lipid Profile of Wistar Rats after Sustained Consumption of Different Types of Commercial Vegetable Oil: A Preliminary Study. Universal Journal of Food and Nutrition Science, 2015, 3, 10-18.	0.2	4

Evaluation of Different Concentrations of Nitrogen for Tomato Seedling Production (Lycopersicon) Tj ETQq000 rg $_{0.1}^{BT}$ /Overlock 10 Tf 50

Jorge Luis ChÃivez-ServÃn

#	Article	IF	CITATIONS
19	Elevated Circulating LDL Phenol Levels in Men Who Consumed Virgin Rather Than Refined Olive Oil Are Associated with Less Oxidation of Plasma LDL ,. Journal of Nutrition, 2010, 140, 501-508.	1.3	103
20	Stability during storage of LC-PUFA-supplemented infant formula containing single cell oil or egg yolk. Food Chemistry, 2009, 113, 484-492.	4.2	20
21	Vitamins A and E content in infant milk-based powdered formulae after opening the packet. Food Chemistry, 2008, 106, 299-309.	4.2	25
22	Analysis of vitamins A, E and C, iron and selenium contents in infant milk-based powdered formula during full shelf-life. Food Chemistry, 2008, 107, 1187-1197.	4.2	33
23	Evolution of available lysine and lactose contents in supplemented microencapsulated fish oil infant formula powder during storage. International Journal of Food Science and Technology, 2008, 43, 1121-1128.	1.3	13
24	Volatile compounds and fatty acid profiles in commercial milk-based infant formulae by static headspace gas chromatography: Evolution after opening the packet. Food Chemistry, 2008, 107, 558-569.	4.2	27
25	Presence of virgin olive oil phenolic metabolites in human low density lipoprotein fraction: Determination by high-performance liquid chromatography–electrospray ionization tandem mass spectrometry. Analytica Chimica Acta, 2007, 583, 402-410.	2.6	65
26	Oxidation stability of the lipid fraction in milk powder formulas. Food Chemistry, 2007, 100, 756-763.	4.2	79
27	Evolution of potential and free furfural compounds in milk-based infant formula during storage. Food Research International, 2006, 39, 536-543.	2.9	37
28	Simultaneous analysis of Vitamins A and E in infant milk-based formulae by normal-phase high-performance liquid chromatography–diode array detection using a short narrow-bore column. Journal of Chromatography A, 2006, 1122, 138-143.	1.8	60
29	Evolution of free mono- and di-saccharide content of milk-based formula powder during storage. Food Chemistry, 2006, 97, 103-108.	4.2	13
30	Analysis of potential and free furfural compounds in milk-based formulae by high-performance liquid chromatography. Journal of Chromatography A, 2005, 1076, 133-140.	1.8	67
31	Analysis of mono- and disaccharides in milk-based formulae by high-performance liquid chromatography with refractive index detection. Journal of Chromatography A, 2004, 1043, 211-215.	1.8	146
32	Phenolic profile and antioxidant capacity of fruit Averrhoa carambola L.: a review. Food Science and Technology, 0, 42, .	0.8	3