Ayesha I T Tulloch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5203548/publications.pdf Version: 2024-02-01

Δνεςμα ΙΤΤυμιοςμ

#	Article	IF	CITATIONS
1	A rangeâ€wide monitoring programme for a critically endangered nomadic bird. Austral Ecology, 2022, 47, 251-260.	0.7	6
2	Environmental and public health co-benefits of consumer switches to immunity-supporting food. Ambio, 2022, , 1.	2.8	1
3	Reconsidering priorities for forest conservation when considering the threats of mining and armed conflict. Ambio, 2022, 51, 2007-2024.	2.8	7
4	Effects of habitat, season and flood on corvid scavenging dynamics in Central Australia. Austral Ecology, 2022, 47, 939-953.	0.7	5
5	How to prioritize species recovery after a megafire. Conservation Biology, 2022, 36, .	2.4	5
6	Accounting for direct and indirect cumulative effects of anthropogenic pressures on salmon- and herring-linked land and ocean ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210130.	1.8	13
7	How to choose a costâ€effective indicator to trigger conservation decisions?. Methods in Ecology and Evolution, 2021, 12, 520-529.	2.2	5
8	A threatened species index for Australian birds. Conservation Science and Practice, 2021, 3, e322.	0.9	18
9	Does scientific interest in the nature impacts of food align with consumer information-seeking behavior?. Sustainability Science, 2021, 16, 1029-1043.	2.5	8
10	Exploring the ability of urban householders to correctly identify nocturnal mammals. Urban Ecosystems, 2021, 24, 1359-1369.	1.1	3
11	Variable effects of protected areas on longâ€ŧerm multispecies trends for Australia's imperiled birds. Conservation Science and Practice, 2021, 3, e443.	0.9	4
12	A guide to using species trait data in conservation. One Earth, 2021, 4, 927-936.	3.6	25
13	Determining ranges of poorly known mammals as a tool for global conservation assessment. Biological Conservation, 2021, 260, 109188.	1.9	3
14	An empirical test of the mechanistic underpinnings of interference competition. Oikos, 2020, 129, 93-105.	1.2	8
15	Predator responses to fire: A global systematic review and metaâ€analysis. Journal of Animal Ecology, 2020, 89, 955-971.	1.3	60
16	Impact of 2019–2020 mega-fires on Australian fauna habitat. Nature Ecology and Evolution, 2020, 4, 1321-1326.	3.4	209
17	Improving sex and gender identity equity and inclusion at conservation and ecology conferences. Nature Ecology and Evolution, 2020, 4, 1311-1320.	3.4	30
18	A guide to ecosystem models and their environmental applications. Nature Ecology and Evolution, 2020, 4, 1459-1471.	3.4	90

#	Article	IF	CITATIONS
19	Ecological forecasts to inform nearâ€term management of threats to biodiversity. Global Change Biology, 2020, 26, 5816-5828.	4.2	23
20	Differences among protected area governance types matter for conserving vegetation communities at risk of loss and fragmentation. Biological Conservation, 2020, 247, 108533.	1.9	24
21	Estimating the spatial coverage of citizen science for monitoring threatened species. Global Ecology and Conservation, 2020, 23, e01048.	1.0	17
22	Dryland communities find little refuge from grazing due to long-term changes in water availability. Journal of Arid Environments, 2020, 176, 104098.	1.2	3
23	Spatial priorities for conserving the most intact biodiverse forests within Central Africa. Environmental Research Letters, 2020, 15, 0940b5.	2.2	18
24	Integrating spatially realistic infrastructure impacts into conservation planning to inform strategic environmental assessment. Conservation Letters, 2019, 12, e12648.	2.8	16
25	Aligning citizen science with best practice: Threatened species conservation in Australia. Conservation Science and Practice, 2019, 1, e100.	0.9	22
26	An experimental test of a compensatory nest predation model following lethal control of an overabundant native species. Biological Conservation, 2019, 231, 122-132.	1.9	15
27	Threat webs: Reframing the coâ€occurrence and interactions of threats to biodiversity. Journal of Applied Ecology, 2019, 56, 1992-1997.	1.9	41
28	The truth about cats and dogs: assessment of apex- and mesopredator diets improves with reduced observer uncertainty. Journal of Mammalogy, 2019, 100, 410-422.	0.6	12
29	Patchâ€scale culls of an overabundant bird defeated by immediate recolonization. Ecological Applications, 2019, 29, e01846.	1.8	21
30	Reply to â€~Consider species specialism when publishing datasets' and â€~Decision trees for data publishing may exacerbate conservation conflict'. Nature Ecology and Evolution, 2019, 3, 320-321.	3.4	0
31	All the eggs in one basket: Are island refuges securing an endangered passerine?. Austral Ecology, 2019, 44, 523-533.	0.7	3
32	Landscapeâ€specific thresholds in the relationship between species richness and natural land cover. Journal of Applied Ecology, 2019, 56, 1019-1029.	1.9	14
33	Time series analysis reveals synchrony and asynchrony between conflict management effort and increasing large grazing bird populations in northern Europe. Conservation Letters, 2019, 12, e12450.	2.8	12
34	The exceptional value of intact forest ecosystems. Nature Ecology and Evolution, 2018, 2, 599-610.	3.4	681
35	Using ideal distributions of the time since habitat was disturbed to build metrics for evaluating landscape condition. Ecological Applications, 2018, 28, 709-720.	1.8	3
36	Conservation conundrums and the challenges of managing unexplained declines of multiple species. Biological Conservation, 2018, 221, 279-292.	1.9	42

#	Article	IF	CITATIONS
37	Species co-occurrence analysis predicts management outcomes for multiple threats. Nature Ecology and Evolution, 2018, 2, 465-474.	3.4	33
38	Interactions between wildfire and drought drive population responses of mammals in coastal woodlands. Journal of Mammalogy, 2018, 99, 416-427.	0.6	14
39	Species coâ€occurrence networks show reptile community reorganization under agricultural transformation. Ecography, 2018, 41, 113-125.	2.1	31
40	Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward. Remote Sensing in Ecology and Conservation, 2018, 4, 71-93.	2.2	176
41	Selecting indicator species for biodiversity management. Frontiers in Ecology and the Environment, 2018, 16, 589-598.	1.9	40
42	A decision tree for assessing the risks and benefits of publishing biodiversity data. Nature Ecology and Evolution, 2018, 2, 1209-1217.	3.4	52
43	Standardized reporting of the costs of management interventions for biodiversity conservation. Conservation Biology, 2018, 32, 979-988.	2.4	74
44	Old growth, regrowth, and planted woodland provide complementary habitat for threatened woodland birds on farms. Biological Conservation, 2018, 223, 120-128.	1.9	9
45	Quantifying the value of monitoring species in multiâ€species, multiâ€threat systems. Methods in Ecology and Evolution, 2018, 9, 1706-1717.	2.2	20
46	Effects of past and present livestock grazing on herpetofauna in a landscapeâ€scale experiment. Conservation Biology, 2017, 31, 446-458.	2.4	29
47	Optimal taxonomic groups for biodiversity assessment: a metaâ€analytic approach. Ecography, 2017, 40, 539-548.	2.1	37
48	The importance of incorporating functional habitats into conservation planning for highly mobile species in dynamic systems. Conservation Biology, 2017, 31, 1018-1028.	2.4	31
49	Understanding the effects of different social data on selecting priority conservation areas. Conservation Biology, 2017, 31, 1439-1449.	2.4	24
50	Quantifying the conservation gains from shared access to linear infrastructure. Conservation Biology, 2017, 31, 1428-1438.	2.4	7
51	Trade-offs between data resolution, accuracy, and cost when choosing information to plan reserves for coral reef ecosystems. Journal of Environmental Management, 2017, 188, 108-119.	3.8	10
52	Quantifying the expected value of uncertain management choices for over-abundant Greylag Geese. Biological Conservation, 2017, 214, 147-155.	1.9	10
53	Compact development minimizes the impacts of urban growth on native mammals. Journal of Applied Ecology, 2017, 54, 794-804.	1.9	22
54	Solving problems of conservation inadequacy for nomadic birds. Australian Zoologist, 2017, 39, 280-295.	0.6	9

#	Article	IF	CITATIONS
55	Dynamic species coâ€occurrence networks require dynamic biodiversity surrogates. Ecography, 2016, 39, 1185-1196.	2.1	31
56	Understanding the importance of small patches of habitat for conservation. Journal of Applied Ecology, 2016, 53, 418-429.	1.9	112
57	Evaluating complementary networks of restoration plantings for landscapeâ€scale occurrence of temporally dynamic species. Conservation Biology, 2016, 30, 1027-1037.	2.4	13
58	Using empirical models of species colonization under multiple threatening processes to identify complementary threatâ€mitigation strategies. Conservation Biology, 2016, 30, 867-882.	2.4	23
59	Incorporating dynamic distributions intoÂspatial prioritization. Diversity and Distributions, 2016, 22, 332-343.	1.9	54
60	Evaluating Trade-Offs between Target Persistence Levels and Numbers of Species Conserved. Conservation Letters, 2016, 9, 51-57.	2.8	16
61	Better planning outcomes requires clear consideration of costs, condition and conservation benefits, and access to the best available data: Reply to Gosper et al., 2016. Biological Conservation, 2016, 200, 242-243.	1.9	2
62	Factoring attitudes towards armed conflict risk into selection of protected areas for conservation. Nature Communications, 2016, 7, 11042.	5.8	27
63	Surviving with a resident despot: do revegetated patches act as refuges from the effects of the noisy miner (<i>Manorina melanocephala</i>) in a highly fragmented landscape?. Diversity and Distributions, 2016, 22, 770-782.	1.9	22
64	Conservation planners tend to ignore improved accuracy of modelled species distributions to focus on multiple threats and ecological processes. Biological Conservation, 2016, 199, 157-171.	1.9	101
65	Fire management strategies to maintain species population processes in a fragmented landscape of fireâ€interval extremes. Ecological Applications, 2016, 26, 2175-2189.	1.8	22
66	Do temporal changes in vegetation structure additional to time since fire predict changes in bird occurrence?. Ecological Applications, 2016, 26, 2267-2279.	1.8	17
67	Two roles for ecological surrogacy: Indicator surrogates and management surrogates. Ecological Indicators, 2016, 63, 121-125.	2.6	79
68	Diversionary feeding: an effective management strategy for conservation conflict?. Biodiversity and Conservation, 2016, 25, 1-22.	1.2	72
69	Geographic range size and extinction risk assessment in nomadic species. Conservation Biology, 2015, 29, 865-876.	2.4	63
70	Effects of threat management interactions on conservation priorities. Conservation Biology, 2015, 29, 1626-1635.	2.4	42
71	Clear consideration of costs, condition and conservation benefits yields better planning outcomes. Biological Conservation, 2015, 191, 716-727.	1.9	35
72	Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Frontiers in Ecology and the Environment, 2015, 13, 91-99.	1.9	187

#	Article	IF	CITATIONS
73	A new framework for selecting environmental surrogates. Science of the Total Environment, 2015, 538, 1029-1038.	3.9	84
74	A conservation planning approach to mitigate the impacts of leakage from protected area networks. Conservation Biology, 2015, 29, 765-774.	2.4	31
75	Effect of risk aversion on prioritizing conservation projects. Conservation Biology, 2015, 29, 513-524.	2.4	59
76	Cross-boundary collaboration: key to the conservation puzzle. Current Opinion in Environmental Sustainability, 2015, 12, 12-24.	3.1	137
77	Informed actions: where to cost effectively manage multiple threats to species to maximize return on investment. Ecological Applications, 2014, 24, 1357-1373.	1.8	67
78	The Value of Using Feasibility Models in Systematic Conservation Planning to Predict Landholder Management Uptake. Conservation Biology, 2014, 28, 1462-1473.	2.4	30
79	Balancing phylogenetic diversity and species numbers in conservation prioritization, using a case study of threatened species in New Zealand. Biological Conservation, 2014, 174, 47-54.	1.9	46
80	Realising the full potential of citizen science monitoring programs. Biological Conservation, 2013, 165, 128-138.	1.9	441
81	Incorporating Socioeconomic and Political Drivers of International Collaboration into Marine Conservation Planning. BioScience, 2013, 63, 547-563.	2.2	27
82	Accounting for Complementarity to Maximize Monitoring Power for Species Management. Conservation Biology, 2013, 27, 988-999.	2.4	34
83	To boldly go where no volunteer has gone before: predicting volunteer activity to prioritize surveys at the landscape scale. Diversity and Distributions, 2013, 19, 465-480.	1.9	80
84	Incorporating uncertainty associated with habitat data in marine reserve design. Biological Conservation, 2013, 162, 41-51.	1.9	49
85	Predicting species distributions for conservation decisions. Ecology Letters, 2013, 16, 1424-1435.	3.0	1,375
86	A behavioural ecology approach to understand volunteer surveying for citizen science datasets. Emu, 2012, 112, 313-325.	0.2	70
87	Wise selection of an indicator for monitoring the success of management actions. Biological Conservation, 2011, 144, 141-154.	1.9	50
88	Effects of food and fire on the demography of a nectar-feeding marsupial: a field experiment. Journal of Zoology, 2007, 273, 382-388.	0.8	11
89	Floristic and structural components of habitat use by the eastern pygmy-possum (Cercartetus nanus) in burnt and unburnt habitats. Wildlife Research, 2006, 33, 627.	0.7	25